REFERENCES

1. Tong, H.; Hong, Y.; Dong, Y.; et al. Fluorescent “light-up” bioprobes based on tetraphenylethylene derivatives with aggregation-induced emission characteristics. Chem. Commun. 2006, 3705-7.

2. Mei, J.; Hong, Y.; Lam, J. W.; Qin, A.; Tang, Y.; Tang, B. Z. Aggregation-induced emission: the whole is more brilliant than the parts. Adv. Mater. 2014, 26, 5429-79.

3. Guan, J.; Wei, R.; Prlj, A.; et al. Direct observation of aggregation-induced emission mechanism. Angew. Chem. Int. Ed. Engl. 2020, 59, 14903-9.

4. Yang, Z.; Chi, Z.; Mao, Z.; et al. Recent advances in mechano-responsive luminescence of tetraphenylethylene derivatives with aggregation-induced emission properties. Mater. Chem. Front. 2018, 2, 861-90.

5. Zhang, Y.; Xie, S.; Zeng, Z.; Tang, B. Z. Functional scaffolds from AIE building blocks. Matter 2020, 3, 1862-92.

6. Zhang, M.; Yao, Y.; Stang, P. J.; Zhao, W. Divergent and stereoselective synthesis of tetraarylethylenes from vinylboronates. Angew. Chem. Int. Ed. Engl. 2020, 59, 20090-8.

7. Liu, Y.; Guan, X.; Fang, Q. Recent advances in AIEgen-based crystalline porous materials for chemical sensing. Aggregate 2021, 2, e34.

8. Zhang, Q.; Dang, X.; Cui, F.; Xiao, T. Supramolecular light-harvesting systems utilizing tetraphenylethylene chromophores as antennas. Chem. Commun. 2024, 60, 10064-79.

9. Dalapati, S.; Gu, C.; Jiang, D. Luminescent porous polymers based on aggregation-induced mechanism: design, synthesis and functions. Small 2016, 12, 6513-27.

10. Ma, L.; Feng, X.; Wang, S.; Wang, B. Recent advances in AIEgen-based luminescent metal–organic frameworks and covalent organic frameworks. Mater. Chem. Front. 2017, 1, 2474-86.

11. Jiang, B.; Zhang, C.; Shi, X.; Yang, H. AIE-active metal-organic coordination complexes based on tetraphenylethylene unit and their applications. Chin. J. Polym. Sci. 2019, 37, 372-82.

12. Wang, S. C.; Zhang, Q. S.; Wang, Z.; et al. Tetraphenylethylene-based hydrogen-bonded organic frameworks (HOFs) with brilliant fluorescence. Angew. Chem. Int. Ed. Engl. 2023, 62, e202315382.

13. He, X.; Bi, H.; Wei, P. Luminescent organic molecular frameworks from tetraphenylethylene-based building blocks. J. Mater. Chem. C. 2023, 11, 3675-91.

14. Wang, F.; Niu, K.; Yao, X.; et al. Tetraphenylethylene-based photoresponsive supramolecular organic framework and its metallization for photocatalytic redox reactions. J. Mater. Chem. A. 2024, 12, 16190-9.

15. Allendorf, M. D.; Stavila, V.; Witman, M.; Brozek, C. K.; Hendon, C. H. What lies beneath a metal-organic framework crystal structure? New design principles from unexpected behaviors. J. Am. Chem. Soc. 2021, 143, 6705-23.

16. Yan, D.; Wang, Z.; Zhang, Z. Stimuli-responsive crystalline smart materials: from rational design and fabrication to applications. Acc. Chem. Res. 2022, 55, 1047-58.

17. Gui, B.; Yu, N.; Meng, Y.; Hu, F.; Wang, C. Immobilization of AIEgens into metal-organic frameworks: ligand design, emission behavior, and applications. J. Polym. Sci. Part. A. Polym. Chem. 2017, 55, 1809-17.

18. Chen, C. X.; Wei, Z. W.; Cao, C. C.; et al. All roads lead to rome: tuning the luminescence of a breathing catenated Zr-MOF by programmable multiplexing pathways. Chem. Mater. 2019, 31, 5550-7.

19. Gutiérrez, M.; Zhang, Y.; Tan, J. C. Confinement of luminescent guests in metal-organic frameworks: understanding pathways from synthesis and multimodal characterization to potential applications of LG@MOF systems. Chem. Rev. 2022, 122, 10438-83.

20. Feng, H. T.; Yuan, Y. X.; Xiong, J. B.; Zheng, Y. S.; Tang, B. Z. Macrocycles and cages based on tetraphenylethylene with aggregation-induced emission effect. Chem. Soc. Rev. 2018, 47, 7452-76.

21. Yu, J. G.; Sun, L. Y.; Wang, C.; Li, Y.; Han, Y. F. Coordination-induced emission from tetraphenylethylene units and their applications. Chemistry 2021, 27, 1556-75.

22. Li, D. M.; Zuo, R.; Wang, J.; Le, Z. The designs and applications of tetraphenylethylene macrocycles and cages. Chemistry 2025, 31, e202403715.

23. Yuan, S.; Feng, L.; Wang, K.; et al. Stable metal-organic frameworks: design, synthesis, and applications. Adv. Mater. 2018, 30, e1704303.

24. Pan, Y.; Sanati, S.; Abazari, R.; et al. Vanadium- and manganese-based metal-organic frameworks for potential environmental and catalysis applications. Coord. Chem. Rev. 2025, 522, 216231.

25. Schneemann, A.; Bon, V.; Schwedler, I.; Senkovska, I.; Kaskel, S.; Fischer, R. A. Flexible metal-organic frameworks. Chem. Soc. Rev. 2014, 43, 6062-96.

26. Dutta, A.; Pan, Y.; Liu, J.; Kumar, A. Multicomponent isoreticular metal-organic frameworks: principles, current status and challenges. Coord. Chem. Rev. 2021, 445, 214074.

27. Han, Z.; Yang, Y.; Rushlow, J.; Liang, R. R.; Zhou, H. C. Sequential linker installation in metal-organic frameworks. Acc. Chem. Res. 2024, 57, 3217-26.

28. Zhu, L.; Zhu, B.; Luo, J.; Liu, B. Design and property modulation of metal–organic frameworks with aggregation-induced emission. ACS. Mater. Lett. 2021, 3, 77-89.

29. Roy, E.; Nagar, A.; Chaudhary, S.; Pal, S. Advanced properties and applications of AIEgens-inspired smart materials. Ind. Eng. Chem. Res. 2020, 59, 10721-36.

30. Shustova, N. B.; Ong, T. C.; Cozzolino, A. F.; Michaelis, V. K.; Griffin, R. G.; Dincă, M. Phenyl ring dynamics in a tetraphenylethylene-bridged metal-organic framework: implications for the mechanism of aggregation-induced emission. J. Am. Chem. Soc. 2012, 134, 15061-70.

31. Shustova, N. B.; Cozzolino, A. F.; Dincă, M. Conformational locking by design: relating strain energy with luminescence and stability in rigid metal-organic frameworks. J. Am. Chem. Soc. 2012, 134, 19596-9.

32. Miao, J.; Graham, W.; Liu, J.; et al. An octacarboxylate-linked sodium metal-organic framework with high porosity. J. Am. Chem. Soc. 2024, 146, 84-8.

33. Liang, R. R.; Xu, S.; Han, Z.; et al. Exceptionally high perfluorooctanoic acid uptake in water by a zirconium-based metal-organic framework through synergistic chemical and physical adsorption. J. Am. Chem. Soc. 2024, 146, 9811-8.

34. Liang, R. R.; Yang, Y.; Han, Z.; et al. Zirconium-based metal-organic frameworks with free hydroxy groups for enhanced perfluorooctanoic acid uptake in water. Adv. Mater. 2024, 36, e2407194.

35. Sun, Z. B.; Si, Y. N.; Zhao, S. N.; Wang, Q. Y.; Zang, S. Q. Ozone decomposition by a manganese-organic framework over the entire humidity range. J. Am. Chem. Soc. 2021, 143, 5150-7.

36. Shustova, N. B.; McCarthy, B. D.; Dincă, M. Turn-on fluorescence in tetraphenylethylene-based metal-organic frameworks: an alternative to aggregation-induced emission. J. Am. Chem. Soc. 2011, 133, 20126-9.

37. Sun, H. L.; Jiang, R.; Li, Z.; Dong, Y. Q.; Du, M. Novel (4,8)-connected scu coordination framework constructed by tetrakis(4-benzoic acid)ethylene. CrystEngComm 2013, 15, 1669.

38. Zhou, Z.; He, C.; Xiu, J.; Yang, L.; Duan, C. Metal-organic polymers containing discrete single-walled nanotube as a heterogeneous catalyst for the cycloaddition of carbon dioxide to epoxides. J. Am. Chem. Soc. 2015, 137, 15066-9.

39. Wang, L.; Wang, W.; Xie, Z. Tetraphenylethylene-based fluorescent coordination polymers for drug delivery. J. Mater. Chem. B. 2016, 4, 4263-6.

40. Zhang, X.; Ren, G.; Li, M.; Yang, W.; Pan, Q. Selective detection of aromatic nitrophenols by a metal–organic framework-based fluorescent sensor. Cryst. Growth. Des. 2019, 19, 6308-14.

41. Yang, L.; Dou, Y.; Zhou, Z.; Zhang, D.; Wang, S. A versatile porous silver-coordinated material for the heterogeneous catalysis of chemical conversion with propargylic alcohols and CO2. Nanomaterials 2019, 9, 1566.

42. Zheng, H. L.; Huang, S. L.; Luo, M. B.; et al. Photochemical in situ exfoliation of metal-organic frameworks for enhanced visible-light-driven CO2 reduction. Angew. Chem. Int. Ed. Engl. 2020, 59, 23588-92.

43. Yang, L.; Dou, Y.; Qin, L.; et al. A lanthanide-containing coordination polymer using tetraphenylethene-based linkers with selective Fe3+ sensing and efficient iodine adsorption activities. Inorg. Chem. 2020, 59, 16644-53.

44. Wu, X. L.; Li, Z. J.; Zhou, H.; et al. Enhanced adsorption and separation of xenon over krypton via an unsaturated calcium center in a metal-organic framework. Inorg. Chem. 2021, 60, 1506-12.

45. Lin, Y.; Yu, L.; Wang, H.; Li, J. Enhanced fluorescence by increasing dimensionality: a novel three-dimensional luminescent metal–organic framework with rigidified ligands. CrystEngComm 2020, 22, 5946-8.

46. Qiao, Y.; Li, Z.; Yu, M.; Chang, Z.; Bu, X. A metal–organic framework featuring highly sensitive fluorescence sensing for Al3+ ions. CrystEngComm 2021, 23, 8087-92.

47. Huai, R.; Xu, M.; Dou, Y.; et al. Synthesis of a tetraphenylethylene-based metal-organic framework as the luminescent sensor for selective sensing of Cr2O72- in aqueous solution. Inorg. Chem. Commun. 2021, 127, 108550.

48. Gu, S. F.; Xiong, X. H.; Gong, L. L.; et al. Classified encapsulation of an organic dye and metal-organic complex in different molecular compartments for white-light emission and selective adsorption of C2H2 over CO2. Inorg. Chem. 2021, 60, 8211-7.

49. Li, M.; Ren, G.; Yang, W.; et al. Dual-emitting piezofluorochromic dye@MOF for white-light generation. Chem. Commun. 2021, 57, 1340-3.

50. Zhu, Z.; Ni, Z.; Zou, H.; Feng, G.; Tang, B. Z. Smart metal–organic frameworks with reversible luminescence/magnetic switch behavior for HCl vapor detection. Adv. Funct. Mater. 2021, 31, 2106925.

51. Che, G.; Gu, D.; Yang, W.; Li, M.; Pan, Q. Turn-on fluorescence detection of acetic acid in wine using a uranyl–organic framework. Cryst. Growth. Des. 2022, 22, 1984-90.

52. Ren, Y.; Xu, H.; Gang, S.; Gao, Y.; Jing, X.; Du, J. An ultra-stable Zr(IV)-MOF for highly efficient capture of SO2 from SO2/CO2 and SO2/CH4 mixtures. Chem. Eng. J. 2022, 431, 134057.

53. Tan, F.; Zha, L.; Zhou, Q. Assembly of AIEgen-based fluorescent metal-organic framework nanosheets and seaweed cellulose nanofibrils for humidity sensing and UV-shielding. Adv. Mater. 2022, 34, e2201470.

54. Zhang, J.; Li, Y.; Chai, F.; et al. Ultrasensitive point-of-care biochemical sensor based on metal-AIEgen frameworks. Sci. Adv. 2022, 8, eabo1874.

55. Song, N.; Li, W.; Luo, W.; et al. Efficient and selective fluorescence sensing of nitro-containing aromatic compounds by a binuclear lanthanide-based metal-organic framework. J. Solid. State. Chem. 2022, 316, 123568.

56. Halder, A.; Bain, D. C.; Oktawiec, J.; et al. Enhancing dynamic spectral diffusion in metal-organic frameworks through defect engineering. J. Am. Chem. Soc. 2023, 145, 1072-82.

57. Meng, S. S.; Xu, M.; Guan, H.; et al. Anisotropic flexibility and rigidification in a TPE-based Zr-MOFs with scu topology. Nat. Commun. 2023, 14, 5347.

58. Pang, J. J.; Yao, Z. Q.; Zhang, K.; et al. Real-time in situ volatile organic compound sensing by a dual-emissive polynuclear Ln-MOF with pronounced Ln(III) luminescence response. Angew. Chem. Int. Ed. Engl. 2023, 62, e202217456.

59. Xiong, Z.; Li, Y.; Yuan, Z.; et al. Switchable anisotropic/isotropic photon transport in a double-dipole metal-organic framework via radical-controlled energy transfer. Adv. Mater. 2024, 36, e2314005.

60. Lv, Y.; Lin, C.; Liu, X.; et al. Differentiated intra-ligand charge transfer boosting multicolor responsive MOF heterostructures as robust anti-counterfeiting labels. Adv. Mater. 2025, 37, e2412637.

61. Zhao, R. C.; Xie, L. H.; Liu, X. M.; Liu, Z.; Li, X. Y.; Li, J. R. Removal of trace benzene from cyclohexane using a MOF molecular sieve. J. Am. Chem. Soc. 2025, 147, 2467-75.

62. Geng, L.; Qiao, Y.; Sun, R.; et al. Solution-processable metal-organic framework featuring highly tunable dynamic aggregation states. Adv. Mater. 2025, 37, e2415511.

63. Li, Y. D.; Ma, L. F.; Yang, G. P.; Wang, Y. Y. Photochromic metal-organic frameworks based on host-guest strategy and different viologen derivatives for organic amines sensing and information anticounterfeiting. Angew. Chem. Int. Ed. Engl. 2025, 64, e202421744.

64. Jiang, Y.; Chang, W.; Li, Z.; et al. Synergistic aggregation-induced emissive linkers in metal-organic frameworks for ultrasensitive and quantitative visual sensing. JACS. Au. 2025, 5, 1875-83.

65. Griffin, S. M.; Bain, D. C.; Halder, A.; Tsangari, S.; Milner, P. J.; Musser, A. J. Unveiling long-lived dual emission in a tetraphenylethylene-based metal–organic framework. MRS. Commun. 2024, 14, 949-56.

66. Wang, X.; Zhang, Z.; Ma, H. L.; et al. Efficient harvesting of triplet excitons via a T1-blocked TADF mechanism in series MOFs for optimal X-ray detection and imaging. Angew. Chem. Int. Ed. Engl. 2025, 64, e202505256.

67. Tong, X.; Zhang, J.; Chen, Y.; et al. Tetraphenylethylene-based metal-organic frameworks for high-voltage stable X-ray scintillation and luminescence. Inorg. Chem. 2025, 64, 21328-32.

68. Wang, S.; Fan, Q.; Wang, L.; et al. Dual-channel gas-sensitive fluorescent switch: realizing a reversible fluorescent response to HCl and NH3. Angew. Chem. Int. Ed. Engl. 2025, 64, e202518302.

69. Tang, J.; Cai, T.; Li, N.; Chen, Z.; Liu, J.; Yang, H. Target-induced dissociation of AIE metal-organic framework for fluorescence-enhanced determination of the chlorpyrifos bioaccumulation in wheat by employing Mn (III) as the active center. J. Hazard. Mater. 2025, 491, 137964.

70. Zhang, M.; Feng, G.; Song, Z.; et al. Two-dimensional metal-organic framework with wide channels and responsive turn-on fluorescence for the chemical sensing of volatile organic compounds. J. Am. Chem. Soc. 2014, 136, 7241-4.

71. Liu, X.; Tao, C.; Yu, H.; et al. A new luminescent metal–organic framework based on dicarboxyl-substituted tetraphenylethene for efficient detection of nitro-containing explosives and antibiotics in aqueous media. J. Mater. Chem. C. 2018, 6, 2983-8.

72. Wei, Z.; Gu, Z. Y.; Arvapally, R. K.; et al. Rigidifying fluorescent linkers by metal-organic framework formation for fluorescence blue shift and quantum yield enhancement. J. Am. Chem. Soc. 2014, 136, 8269-76.

73. Liu, X. G.; Wang, H.; Chen, B.; et al. A luminescent metal-organic framework constructed using a tetraphenylethene-based ligand for sensing volatile organic compounds. Chem. Commun. 2015, 51, 1677-80.

74. Hu, Z.; Huang, G.; Lustig, W. P.; et al. Achieving exceptionally high luminescence quantum efficiency by immobilizing an AIE molecular chromophore into a metal-organic framework. Chem. Commun. 2015, 51, 3045-8.

75. Zhang, Q.; Su, J.; Feng, D.; Wei, Z.; Zou, X.; Zhou, H. C. Piezofluorochromic metal-organic framework: a microscissor lift. J. Am. Chem. Soc. 2015, 137, 10064-7.

76. Yang, W.; Chang, G.; Wang, H.; et al. A three-dimensional tetraphenylíethene-based metal–organic framework for selective gas separation and luminescence sensing of metal ions. Eur. J. Inorg. Chem. 2016, 2016, 4470-5.

77. Deibert, B. J.; Velasco, E.; Liu, W.; Teat, S. J.; Lustig, W. P.; Li, J. High-performance blue-excitable yellow phosphor obtained from an activated solvochromic bismuth-fluorophore metal–organic framework. Cryst. Growth. Des. 2016, 16, 4178-82.

78. Hu, X.; Wang, Z.; Lin, B.; et al. Two-dimensional metal-organic layers as a bright and processable phosphor for fast white-light communication. Chemistry 2017, 23, 8390-4.

79. Medishetty, R.; Nalla, V.; Nemec, L.; et al. A new class of lasing materials: intrinsic stimulated emission from nonlinear optically active metal-organic frameworks. Adv. Mater. 2017, 29, 1605637.

80. Medishetty, R.; Nemec, L.; Nalla, V.; et al. Multi-photon absorption in metal-organic frameworks. Angew. Chem. Int. Ed. Engl. 2017, 56, 14743-8.

81. Baroni, N.; Turshatov, A.; Adams, M.; et al. Inkjet-printed photoluminescent patterns of aggregation-induced-emission chromophores on surface-anchored metal-organic frameworks. ACS. Appl. Mater. Interfaces. 2018, 10, 25754-62.

82. Chen, C.; Wei, Z.; Fan, Y.; et al. Visualization of anisotropic and stepwise piezofluorochromism in an MOF single crystal. Chem 2018, 4, 2658-69.

83. Tao, C.; Ying, Y.; Wang, H.; et al. Nonwoven fabric coated with a tetraphenylethene-based luminescent metal–organic framework for selective and sensitive sensing of nitrobenzene and ammonia. J. Mater. Chem. C. 2018, 6, 12371-6.

84. Wang, F.; Zhou, L.; Lustig, W. P.; et al. Highly luminescent metal–organic frameworks based on an aggregation-induced emission ligand as chemical sensors for nitroaromatic compounds. Cryst. Growth. Des. 2018, 18, 5166-73.

85. Chen, C. X.; Yin, S. Y.; Wei, Z. W.; et al. Pressure-induced multiphoton excited fluorochromic metal-organic frameworks for improving MPEF properties. Angew. Chem. Int. Ed. Engl. 2019, 58, 14379-85.

86. Huang, W.; Hu, G. B.; Yao, L. Y.; et al. Matrix coordination-induced electrochemiluminescence enhancement of tetraphenylethylene-based hafnium metal-organic framework: an electrochemiluminescence chromophore for ultrasensitive electrochemiluminescence sensor construction. Anal. Chem. 2020, 92, 3380-7.

87. Guan, Q. L.; Han, C.; Bai, F. Y.; et al. Bismuth-MOF based on tetraphenylethylene derivative as a luminescent sensor with turn-off/on for application of Fe3+ detection in serum and bioimaging, as well as emissive spectra analysis by TRES. Sens. Actuators. B. Chem. 2020, 325, 128767.

88. Chen, M.; Dong, R.; Zhang, J.; et al. Nanoscale metal-organic frameworks that are both fluorescent and hollow for self-indicating drug delivery. ACS. Appl. Mater. Interfaces. 2021, 13, 18554-62.

89. Pang, J.; Du, R.; Lian, X.; Yao, Z.; Xu, J.; Bu, X. Selective sensing of CrVI and FeIII ions in aqueous solution by an exceptionally stable TbIII-organic framework with an AIE-active ligand. Chin. Chem. Lett. 2021, 32, 2443-7.

90. Wang, F. M.; Hu, B. X.; Lustig, W. P.; et al. Three robust blue-emitting anionic metal-organic frameworks with high stability and good proton conductivities. Inorg. Chem. 2021, 60, 17926-32.

91. Yang, Q.; Wang, Y.; Yang, J.; et al. An anionic potassium-organic framework for selective removal of uranyl ions. Dalton. Trans. 2021, 50, 8314-21.

92. Guan, Q. L.; Xu, F.; Xiao, Y.; You, Z. X.; Bai, F. Y.; Xing, Y. H. Extremely stable thorium-MOF assembly of tetraphenylethylene derivative with tunable AIE property and highly selective detection of nitro aromatic compounds. Adv. Mater. Inter. 2022, 9, 2201547.

93. Liu, N.; Chen, Z.; Fan, W.; et al. Highly efficient multiphoton absorption of zinc-AIEgen metal-organic frameworks. Angew. Chem. Int. Ed. Engl. 2022, 61, e202115205.

94. Xue, Y. Q.; Liao, N.; Li, Y.; et al. Ordered heterogeneity in dual-ligand MOF to enable high electrochemiluminescence efficiency for bioassay with DNA triangular prism as signal switch. Biosens. Bioelectron. 2022, 217, 114713.

95. Wang, C.; Zhang, T.; Sun, L.; Xing, Y.; Bai, F. Multi-stimulus responsive properties of a Cd-MOF based on tetraphenylethylene. Inorg. Chem. Front. 2023, 10, 7351-8.

96. Lu, J.; Gao, J.; Qian, R.; Wang, S.; Zheng, F.; Guo, G. Highly crystallization-induced emissive luminophores with mechanoluminescent features for two-photon harvesting fluorescence imaging and latent fingerprint identification. Nano. Res. 2024, 17, 6475-82.

97. Ren, X.; Zhang, D.; Li, C.; et al. Europium metal-organic framework with a tetraphenylethylene-based ligand: a dual-mechanism quenching immunosensor for enhanced electrochemiluminescence via the coordination trigger. Anal. Chem. 2024, 96, 3898-905.

98. Zhao, S. S.; Wang, S. H.; Sun, Q.; et al. Fluorescent tetraphenylethylene-based cerium metal-organic frameworks for white-light-emitting diodes. ACS. Appl. Mater. Interfaces. 2024, 16, 58891-7.

99. He, H.; Li, J.; Zhuang, J.; et al. Boosting one- and two-photon excited fluorescence of interpenetrated tetraphenylethene-based metal-organic frameworks (TPE-MOFs) by linker installation. Angew. Chem. Int. Ed. Engl. 2025, 64, e202420912.

100. Wu, Y.; Shi, L.; Xu, L.; et al. Supramolecular docking structure determination of alkyl-bearing molecules. Nature 2025, 640, 676-82.

101. Li, X.; Zhao, J.; Wang, Y.; et al. Fluorescent tetraphenylethylene-based europium metal-organic framework for white-light-emitting diodes. Inorg. Chem. 2025, 64, 17313-21.

102. Zhao, J.; Li, X.; Zhao, S.; et al. Fluorescent tetraphenylethylene-based terbium metal–organic frameworks for white-light-emitting diodes. J. Alloys. Compd. 2025, 1032, 181044.

103. Guan, J.; Ren, S. H.; Jiang, H. J.; et al. Layer-by-layer growth of an oriented tetraphenylethylene-based MOF thin film for fluorescence sensing. Inorg. Chem. 2025, 64, 15943-50.

104. Li, C.; Chen, Z.; Sun, C.; et al. Topology-tuned structural flexibility toward customized piezofluorochromism in stable zirconium MOFs. Angew. Chem. Int. Ed. Engl. 2025, e16124.

105. Li, Y. L.; Wang, H. L.; Ai, J. F.; et al. Respiration drives dynamic metal-organic framework for smart photoresponse to volatile toxic vapors and their photodynamic sterilization. Adv. Sci. 2025, 12, e2501824.

106. Wang, W.; Wen, Y.; Su, J.; et al. Carbon dioxide (CO2) fixation: linearly bridged Zn2 paddlewheel nodes by CO2 in a metal-organic framework. Inorg. Chem. 2019, 58, 16040-6.

107. Hurlock, M. J.; Lare, M. F.; Zhang, Q. Two Cd-based luminescent coordination polymers constructed from a truncated linker. Inorg. Chem. 2021, 60, 2503-13.

108. Lv, Y.; Liang, J.; Li, D.; et al. Hydration-facilitated coordination tuning of metal-organic frameworks toward water-responsive fluorescence and proton conduction. Inorg. Chem. 2022, 61, 18789-94.

109. Wang, S. C.; Zhang, Q. S.; Wang, Z.; et al. One and two-photon excited fluorescence optimization of metal-organic frameworks with symmetry-reduced AIEgen-ligand. Angew. Chem. Int. Ed. Engl. 2022, 61, e202211356.

110. Wei, Z.; Lu, W.; Jiang, H. L.; Zhou, H. C. A route to metal-organic frameworks through framework templating. Inorg. Chem. 2013, 52, 1164-6.

111. Moreau, F.; Kolokolov, D. I.; Stepanov, A. G.; et al. Tailoring porosity and rotational dynamics in a series of octacarboxylate metal-organic frameworks. Proc. Natl. Acad. Sci. U. S. A. 2017, 114, 3056-61.

112. Guo, X.; Zhu, N.; Wang, S. P.; et al. Stimuli-responsive luminescent properties of tetraphenylethene-based strontium and cobalt metal-organic frameworks. Angew. Chem. Int. Ed. Engl. 2020, 59, 19716-21.

113. Guo, Q.; Ma, T.; Zhou, L.; Ma, J.; Yang, J.; Yang, Q. Efficient detection of Cr3+ and Cr2O72- using a Zn(II) luminescent metal–organic framework. New. J. Chem. 2020, 44, 7293-9.

114. Wang, S.; Zhao, L.; Sun, H.; et al. Two novel three-dimensional tetraphenylethylene-based rare earth MOFs with ultra-high proton conductivity and performance stability. Chemistry 2022, 28, e202202154.

115. Zhu, Z. H.; Bi, C.; Zou, H. H.; Feng, G.; Xu, S.; Tang, B. Z. Smart tetraphenylethene-based luminescent metal-organic frameworks with amide-assisted thermofluorochromics and piezofluorochromics. Adv. Sci. 2022, 9, e2200850.

116. Zhou, Y. J.; Wang, S. H.; Zhang, Z. K.; Xiong, J. Directional design of carboxylic acid coordination number fine-tuned space structure to improve the output performance of nanogenerators. RSC. Adv. 2023, 13, 28224-9.

117. Ma, X.; Wang, S. Y.; Luo, Y. J.; et al. Bifunctional in-MOFs for selective and sensitive detection of trace nitrobenzene compounds in water and possessing high proton conductivity. Inorg. Chem. 2024, 63, 18323-31.

118. Tan, C.; Qian, X.; Wu, K.; Deng, A.; Feng, X.; Li, J. Aggregation-induced ECL immunosensor using ligand-mediated highly stable tetraphenylethene-based zinc metal–organic frameworks for the detection of 5-fluorouracil. ACS. Appl. Nano. Mater. 2024, 7, 15958-67.

119. Yu, L.; He, M.; Yao, J.; et al. A robust aluminum-octacarboxylate framework with scu topology for selective capture of sulfur dioxide. Chem. Sci. 2024, 15, 8530-5.

120. Yu, L.; Li, S.; Zhou, X.; et al. Building ultramicroporous zirconium metal‒organic frameworks with ligands of high coordination density through a reticular approach. Nat. Chem. 2025, 17, 1207-15.

121. Zhao, S.; Zhang, H.; Wang, L.; Chen, L.; Xie, Z. Facile preparation of a tetraphenylethylene-doped metal–organic framework for white light-emitting diodes. J. Mater. Chem. C. 2018, 6, 11701-6.

122. Haldar, R.; Diring, S.; Samanta, P. K.; et al. Enhancing selectivity and kinetics in oxidative photocyclization by supramolecular control. Angew. Chem. Int. Ed. Engl. 2018, 57, 13662-5.

123. Johnson, K. N.; Hurlock, M. J.; Zhang, Q.; Hipps, K. W.; Mazur, U. Balancing noncovalent interactions in the self-assembly of nonplanar aromatic carboxylic acid MOF linkers at the solution/solid interface: HOPG vs Au(111). Langmuir 2019, 35, 5271-80.

124. Tao, C. L.; Chen, B.; Liu, X. G.; et al. A highly luminescent entangled metal-organic framework based on pyridine-substituted tetraphenylethene for efficient pesticide detection. Chem. Commun. 2017, 53, 9975-8.

125. Zhao, S. S.; Wang, L.; Liu, Y.; Chen, L.; Xie, Z. Stereochemically dependent synthesis of two Cu(I) cluster-based coordination polymers with thermochromic luminescence. Inorg. Chem. 2017, 56, 13975-81.

126. Xu, Y.; Tao, C. L.; Yu, M.; et al. Tetraphenylethene-based luminescent metal-organic framework for effective differentiation of cis/trans isomers. ACS. Appl. Mater. Interfaces. 2020, 12, 35266-72.

127. Gong, Q.; Hu, Z.; Deibert, B. J.; et al. Solution processable MOF yellow phosphor with exceptionally high quantum efficiency. J. Am. Chem. Soc. 2014, 136, 16724-7.

128. Hu, Z.; Lustig, W. P.; Zhang, J.; et al. Effective detection of mycotoxins by a highly luminescent metal-organic framework. J. Am. Chem. Soc. 2015, 137, 16209-15.

129. Jackson, S. L.; Rananaware, A.; Rix, C.; Bhosale, S. V.; Latham, K. Clathrate directed assembly of tetrapyridyl-tetraphenylethylene metal–organic frameworks. RSC. Adv. 2015, 5, 84134-41.

130. Jackson, S. L.; Rananaware, A.; Rix, C.; Bhosale, S. V.; Latham, K. Highly fluorescent metal–organic framework for the sensing of volatile organic compounds. Cryst. Growth. Des. 2016, 16, 3067-71.

131. Zhao, X.; Li, Y.; Chang, Z.; Chen, L.; Bu, X. H. A four-fold interpenetrated metal-organic framework as a fluorescent sensor for volatile organic compounds. Dalton. Trans. 2016, 45, 14888-92.

132. Zhao, S. S.; Chen, L.; Zheng, X.; Wang, L.; Xie, Z. PEG-induced synthesis of coordination-polymer isomers with tunable architectures and iodine capture. Chem. Asian. J. 2017, 12, 615-20.

133. Zhao, S. S.; Chen, L.; Wang, L.; Xie, Z. Two tetraphenylethene-containing coordination polymers for reversible mechanochromism. Chem. Commun. 2017, 53, 7048-51.

134. Zhao, Y.; Wang, Y. J.; Wang, N.; et al. Tetraphenylethylene-decorated metal-organic frameworks as energy-transfer platform for the detection of nitro-antibiotics and white-light emission. Inorg. Chem. 2019, 58, 12700-6.

135. Xiong, J.; Qian, X.; Zhao, L.; Xu, J. A fluorescent responsive tetraphenylethene based metal–organic framework. Inorg. Chem. Commun. 2019, 105, 20-5.

136. Wu, X. H.; Luo, P.; Wei, Z.; et al. Guest-triggered aggregation-induced emission in silver chalcogenolate cluster metal-organic frameworks. Adv. Sci. 2019, 6, 1801304.

137. Ge, J. Y.; Chen, Z.; Zhang, L.; et al. A two-dimensional iron(II) coordination polymer with synergetic spin-crossover and luminescent properties. Angew. Chem. Int. Ed. Engl. 2019, 58, 8789-93.

138. Wu, X.; Wei, Z.; Yan, B.; et al. Mesoporous crystalline silver-chalcogenolate cluster-assembled material with tailored photoluminescence properties. CCS. Chem. 2019, 1, 553-60.

139. Zhu, L.; Wong, B. J. C.; Li, Y.; Xin, H.; Liu, B.; Lei, J. Quencher-delocalized emission strategy of AIEgen-based metal-organic framework for profiling of subcellular glutathione. Chemistry 2019, 25, 4665-9.

140. Shang, W.; Zhu, X.; Liang, T.; et al. Chiral reticular self-assembly of achiral AIEgen into optically pure metal-organic frameworks (MOFs) with dual mechano-switchable circularly polarized luminescence. Angew. Chem. Int. Ed. Engl. 2020, 59, 12811-6.

141. Gong, G.; Lv, S.; Han, J.; et al. Halogen-bonded organic framework (XOF) based on iodonium-bridged NI···I+···N interactions: a type of diphase periodic organic network. Angew. Chem. Int. Ed. Engl. 2021, 60, 14831-5.

142. Cui, R.; Niu, H.; Sheng, E. Coordination-induced spontaneous resolution of a TPPE-based MOF and its use as a crystalline sponge in guest determination. Dalton. Trans. 2021, 50, 7186-90.

143. Atoini, Y.; Cavinato, L. M.; Fernandez-Cestau, J.; Gmach, Y.; Van Opdenbosch, D.; Costa, R. D. From blue to white: sustainable luminescent metal organic framework for hybrid light-emitting diodes. Adv. Opt. Mater. 2023, 11, 2202643.

144. Mao, S.; Lin, Y.; Li, X.; Wang, H. Highly luminescent metal–organic frameworks based on binary chromophoric ligands derived from tetraphenylethylene. Cryst. Growth. Des. 2022, 22, 5791-5.

145. Xiao, S.; Wang, X.; Yang, C.; et al. Electrochemiluminescence resonance energy transfer system based on silver metal-organic frameworks as a double-amplified emitter for sensitive detection of miRNA-107. Anal. Chem. 2022, 94, 1178-86.

146. Lyu, B. H.; Xie, K. P.; Cui, W.; et al. Cyanometallic charge engineering in spin crossover metal-organic frameworks. Chem. Commun. 2024, 60, 4318-21.

147. Yin, H. Q.; Chen, J.; Xue, Y. W.; et al. Loading dyes into chiral Cd/Zn-metal-organic frameworks for efficient full-color circularly polarized luminescence. Angew. Chem. Int. Ed. Engl. 2024, 63, e202407596.

148. Kang, K.; Dai, X.; Shen, N.; et al. Unveiling the uncommon fluorescent recognition mechanism towards pertechnetate using a cationic metal-organic framework bearing N-heterocyclic AIE molecules. Chemistry 2021, 27, 5632-7.

149. Kang, K.; Li, L.; Zhang, M.; Zhang, X.; Lei, L.; Xiao, C. Constructing cationic metal-organic framework materials based on pyrimidyl as a functional group for perrhenate/pertechnetate sorption. Inorg. Chem. 2021, 60, 16420-8.

150. Lv, Y.; Xiong, Z.; Yao, Z.; et al. Steric-hindrance-controlled laser switch based on pure metal-organic framework microcrystals. J. Am. Chem. Soc. 2019, 141, 19959-63.

151. Lv, Y.; Xiong, Z.; Dong, H.; et al. Pure metal-organic framework microlasers with controlled cavity shapes. Nano. Lett. 2020, 20, 2020-5.

152. Lv, Y.; Xiong, Z.; Yao, Y.; et al. Controlled shape evolution of pure-MOF 1D microcrystals towards efficient waveguide and laser applications. Chemistry 2021, 27, 3297-301.

153. Zhang, H.; Zhao, B.; Yuan, W.; et al. Syntheses and characterizations of two-dimensional polymers based on tetraimidazole tetraphenylethylene ligand with aggregation-induced emission property. Inorg. Chem. Commun. 2013, 35, 208-12.

154. Chen, H.; Liu, P. X.; Xu, N.; Meng, X.; Wang, H. N.; Zhou, Z. Y. A visible light-driven photocatalyst of a stable metal-organic framework based on Cu4Cl clusters and TIPE spacers. Dalton. Trans. 2016, 45, 13477-82.

155. Peng, M.; Huang, K.; Li, X.; et al. Tetra(4-imidazoylphenyl)ethylene based metal-organic frameworks for highly selective detection of TNP and Fe3+. J. Solid. State. Chem. 2019, 280, 120993.

156. Qiu, Z.; Zhao, S.; Xu, Z.; Zhao, Y.; Wang, Z.; Sun, W. Crystal structures and luminescent probe behaviors of three-dimensional Zn(II) frameworks with multicarboxylate and tetradentate imidazole-containing ligands. Cryst. Growth. Des. 2021, 21, 5306-16.

157. Tian, H.; Zha, M.; Ding, J.; Zhu, L.; Li, B.; Wu, B. Visible-light-driven and ultrasonic-assisted copper metal-organic frameworks and graphene oxide nanocomposite for decolorization of dyes. J. Solid. State. Chem. 2021, 304, 122627.

158. Tian, H.; Zha, M.; Ma, L.; Zhou, W.; Li, B.; Wu, B. Metal-organic frameworks based on tetra(imidazole) and multicarboxylate: Syntheses, structures, luminescence, photocatalytic and sonocatalytic degradation of methylene blue. Polyhedron 2021, 197, 115052.

159. Xu, Z.; Zhao, S.; Zhao, Y.; Sun, W. Synthesis, structure and properties of luminescent Cd(II) coordination polymers based on imidazole-decorated tetraphenylethylene. J. Coord. Chem. 2021, 74, 294-305.

160. Xiong, J.; Chen, J.; Li, S.; et al. pH-Dependent dual-mode detection toward uranium by a zinc-tetraphenylethylene fluorescent metal-organic framework. Inorg. Chem. 2023, 62, 17634-40.

161. Wang, Y. J.; Qiu, Z. F.; Zhang, Y.; Wang, F. F.; Zhao, Y.; Sun, W. Y. Silver frameworks based on a tetraphenylethylene-imidazole ligand for electrocatalytic reduction of CO2 to CO. Dalton. Trans. 2024, 53, 3685-9.

162. Wang, Y.; Yuan, B.; Xu, Y. Y.; Wang, X. G.; Ding, B.; Zhao, X. J. Turn-on fluorescence and unprecedented encapsulation of large aromatic molecules within a manganese(II)-triazole metal-organic confined space. Chemistry 2015, 21, 2107-16.

163. Wang, Y.; Jia, W.; Chen, R.; Zhao, X. J.; Wang, Z. L. Guest-induced SC-SC transformation within the first K/Cd heterodimetallic triazole complex: a luminescent sensor for high-explosives and cyano molecules. Chem. Commun. 2017, 53, 636-9.

164. Wang, Z. X.; Tian, H. X.; Ding, J. G.; Li, B. L.; Wu, B. A Co-MOF with a (4,4)-connected binodal two-dimensional topology: synthesis, structure and photocatalytic properties. Acta. Crystallogr. C. Struct. Chem. 2020, 76, 23-9.

165. Wang, Z.; Tian, H.; Li, M.; Zha, M.; Li, B.; Wu, B. A 2D cadmium metal–organic framework: synthesis, structure and luminescence sensing for chromate, permanganate, cupric, silver and ferric. Appl. Organomet. Chem. 2020, 34, e5977.

166. Wang, Z.; Tian, H.; Zha, M.; Li, M.; Li, B.; Li, H. Synthesis, structure and properties of a 3D coordination polymer based on tetranuclear copper(I) and a tetra(triazole) ligand. J. Coord. Chem. 2020, 73, 2042-54.

167. Zhang, Y.; Wang, Z.; Qin, H.; Zha, M.; Li, B.; Li, H. Topology of two copper(II) coordination polymers with tetra(triazole) and dicarboxylate, photocatalytic and sonocatalytic decomposition of MB. J. Coord. Chem. 2021, 74, 2617-30.

168. Ye, Y.; Zhang, H.; Chen, L.; et al. Metal-organic framework with rich accessible nitrogen sites for highly efficient CO2 capture and separation. Inorg. Chem. 2019, 58, 7754-9.

169. Gu, P.; Wu, H.; Jing, T.; et al. (4,5,8)-Connected cationic coordination polymer material as explosive chemosensor based on the in situ generated AIE tetrazolyl-tetraphenylethylene derivative. Inorg. Chem. 2021, 60, 13359-65.

170. Han, X.; Tong, J.; Ding, G.; et al. Highly emissive coordination polymer derived from tetraphenylethylene-tetrazole chromophore: synthesis, characterization and piezochromic luminescent behavior. Chin. Chem. Lett. 2023, 34, 107255.

171. Kang, H.; Zhou, H.; Tang, X.; et al. An AIE-active tetraphenylethene functionalized silver-tetrazolate coordination polymer for selective fluorescence sensing of explosives. CrystEngComm 2023, 25, 4231-7.

172. Kang, S. H.; Luo, F. L.; Huang, Y. L.; et al. Highly emissive and robust Cd-based MOF with an unprecedented topology for tetracycline sensing. Inorg. Chem. 2024, 63, 3075-82.

173. Chen, Y.; Li, C.; Wang, X.; et al. Tetraphenylethene-based Ni8-pyrazolate metal-organic framework for photoredox/nickel dual catalysis of C-S cross-coupling. Inorg. Chem. 2024, 63, 19924-30.

174. Liang, R.; Fu, Y.; Han, Z.; et al. A robust pyrazolate metal–organic framework for integrated perfluorooctanoic acid concentration and degradation. Nat. Water. 2024, 2, 1218-25.

175. Liang, R. R.; Liu, Z.; Han, Z.; Yang, Y.; Rushlow, J.; Zhou, H. C. Anchoring catalytic metal nodes within a single-crystalline pyrazolate metal-organic framework for efficient heterogeneous catalysis. Angew. Chem. Int. Ed. Engl. 2025, 64, e202414271.

176. Wöhlbrandt, S.; Meier, C.; Reinsch, H.; Svensson Grape, E.; Inge, A. K.; Stock, N. A tetratopic phosphonic acid for the synthesis of permanently porous MOFs: reactor size-dependent product formation and crystal structure elucidation via three-dimensional electron diffraction. Inorg. Chem. 2020, 59, 13343-52.

177. Steinke, F.; Javed, A.; Wöhlbrandt, S.; Tiemann, M.; Stock, N. New isoreticular phosphonate MOFs based on a tetratopic linker. Dalton. Trans. 2021, 50, 13572-9.

178. Chakraborty, D.; Ghorai, A.; Bhanja, P.; Banerjee, S.; Bhaumik, A. High proton conductivity in a charge carrier-induced Ni(II) metal–organic framework. New. J. Chem. 2022, 46, 1867-76.

179. Chakraborty, D.; Bej, S.; Sahoo, S.; et al. Novel nanoporous Ti-phosphonate metal–organic framework for selective sensing of 2,4,6-trinitrophenol and a promising electrode in an energy storage device. ACS. Sustainable. Chem. Eng. 2021, 9, 14224-37.

180. Chakraborty, D.; Chowdhury, A.; Chandra, M.; et al. Novel tetradentate phosphonate ligand based bioinspired co-metal–organic frameworks: robust electrocatalyst for the hydrogen evolution reaction in different mediums. Cryst. Growth. Des. 2021, 21, 2614-23.

181. Chakraborty, D.; Ghorai, A.; Chowdhury, A.; Banerjee, S.; Bhaumik, A. A tetradentate phosphonate ligand-based Ni-MOF as a support for designing high-performance proton-conducting materials. Chem. Asian. J. 2021, 16, 1562-9.

182. Steinke, F.; Otto, T.; Ito, S.; Wöhlbrandt, S.; Stock, N. Isostructural family of rare-earth MOFs synthesized from 1,1,2,2-tetrakis(4-phosphonophenyl)ethylene. Eur. J. Inorg. Chem. 2022, 2022, e202200562.

183. Chakraborty, D.; Bej, S.; Chatterjee, R.; Banerjee, P.; Bhaumik, A. A new phosphonate based Mn-MOF in recognising arginine over lysine in aqueous medium and other bio-fluids with “Sepsis” disease remediation. Chem. Eng. J. 2022, 446, 136916.

184. Chakraborty, D.; Musib, D.; Saha, R.; et al. Highly stable tetradentate phosphonate-based green fluorescent Cu-MOF for anticancer therapy and antibacterial activity. Mater. Today. Chem. 2022, 24, 100882.

185. Bai, X.; Cao, L.; Chen, X.; Cao, X.; Meng, W.; Yan, K. A sodium-based phosphonates metal–organic framework with superprotonic conductivity. Cryst. Growth. Des. 2023, 23, 8488-93.

186. Gao, C.; Mao, C.; Yang, Y.; et al. Epoxide activation by a silver phosphonate for heterogeneous catalysis of CO2 cycloaddition. CrystEngComm 2022, 25, 108-13.

187. Steinke, F.; Bette, S.; Ruser, N.; et al. Insights into a new multi-stimuli-responsive photochromic metal-organic framework: highly sensitive turn-on luminescence in a lanthanum phosphonate. Adv. Funct. Mater. 2024, 34, 2403631.

188. Deng, Y.; Chen, N.; Li, Q.; et al. Highly fluorescent metal–organic frameworks based on a benzene-cored tetraphenylethene derivative with the ability to detect 2,4,6-trinitrophenol in water. Cryst. Growth. Des. 2017, 17, 3170-7.

189. Stawiasz, K. J.; Deneff, J. I.; Reyes, R. A.; et al. Improved quantum yield in geometrically constrained tetraphenylethylene-based metal–organic frameworks. CrystEngComm 2023, 25, 2701-5.

190. Wang, Z.; Zhu, C. Y.; Mo, J. T.; et al. White-light emission from dual-way photon energy conversion in a dye-encapsulated metal-organic framework. Angew. Chem. Int. Ed. Engl. 2019, 58, 9752-7.

191. Guo, C. R.; Ying, Y. M.; Yu, M.; Xiong, Y.; Liu, X. G.; Zhao, Z. Nitrogen-rich tetraphenylethene-based luminescent metal-organic framework for efficient detection of carcinogens. ACS. Omega. 2021, 6, 2177-83.

192. Lustig, W. P.; Wang, F.; Teat, S. J.; Hu, Z.; Gong, Q.; Li, J. Chromophore-based luminescent metal-organic frameworks as lighting phosphors. Inorg. Chem. 2016, 55, 7250-6.

193. Wang, F.; Liu, W.; Teat, S. J.; et al. Chromophore-immobilized luminescent metal-organic frameworks as potential lighting phosphors and chemical sensors. Chem. Commun. 2016, 52, 10249-52.

194. Lustig, W. P.; Shen, Z.; Teat, S. J.; et al. Rational design of a high-efficiency, multivariate metal-organic framework phosphor for white LED bulbs. Chem. Sci. 2020, 11, 1814-24.

195. Wu, Z.; Velasco, E.; Shan, C.; et al. Robust fluorescent calcium coordination polymers as Cu2+ sensors with high sensitivity and fast response. J. Mater. Chem. C. 2020, 8, 6820-5.

196. Lustig, W. P.; Teat, S. J.; Li, J. Improving LMOF luminescence quantum yield through guest-mediated rigidification. J. Mater. Chem. C. 2019, 7, 14739-44.

197. Mayer, D. C.; Zarȩba, J. K.; Raudaschl-Sieber, G.; et al. Postsynthetic framework contraction enhances the two-photon absorption properties of pillar-layered metal–organic frameworks. Chem. Mater. 2020, 32, 5682-90.

198. Wu, Z. F.; Tan, B.; Fu, Z. H.; et al. Achieving a blue-excitable yellow-emitting Ca-LMOF phosphor via water induced phase transformation. Chem. Sci. 2022, 13, 1375-81.

199. Li, Q.; Zhou, Y.; Zou, W.; et al. An acid-resistant lanthanide metal-organic framework based on tetraphenylethylene as an electrochemical nitrite sensor. Inorg. Chem. 2024, 63, 23354-62.

200. Wu, Q.; Li, Q.; Zou, W.; Zhang, Z.; Zhou, Y.; Zhao, Q. Two novel lanthanide metal-organic frameworks based on tetraphenylethylene for ultra-high proton conduction. Chem. Commun. 2025, 61, 1842-5.

201. Zou, W.; Li, Q.; Wu, Q.; Zhang, Z.; Zhou, Y. Bifunctional Dy-MOF for efficient electrochemical detection and photocatalytic reduction of Cr(VI). Chem. Eng. J. 2025, 505, 159428.

202. Li, Q. Y.; Ma, Z.; Zhang, W. Q.; et al. AIE-active tetraphenylethene functionalized metal-organic framework for selective detection of nitroaromatic explosives and organic photocatalysis. Chem. Commun. 2016, 52, 11284-7.

203. Dong, J.; Shen, P.; Ying, S.; et al. Aggregation-induced emission-responsive metal–organic frameworks. Chem. Mater. 2020, 32, 6706-20.

204. Freund, R.; Canossa, S.; Cohen, S. M.; et al. 25 Years of reticular chemistry. Angew. Chem. Int. Ed. Engl. 2021, 60, 23946-74.

205. Chen, Z.; Kirlikovali, K. O.; Li, P.; Farha, O. K. Reticular chemistry for highly porous metal−organic frameworks: the chemistry and applications. Acc. Chem. Res. 2022, 55, 579-91.

206. Li, J.; Huang, J. Y.; Meng, Y. X.; Li, L.; Zhang, L. L.; Jiang, H. L. Zr- and Ti-based metal-organic frameworks: synthesis, structures and catalytic applications. Chem. Commun. 2023, 59, 2541-59.

207. Wang, Y.; Shi, L.; Ma, D.; et al. Tumor-activated and metal-organic framework assisted self-assembly of organic photosensitizers. ACS. Nano. 2020, 14, 13056-68.

208. Zhang, Y.; Yuan, S.; Day, G.; Wang, X.; Yang, X.; Zhou, H. Luminescent sensors based on metal-organic frameworks. Coord. Chem. Rev. 2018, 354, 28-45.

209. Sita, L. R.; Kinoshita, I. Decakis(2,6-diethylphenyl)decastanna[5]prismane: characterization and molecular structure. J. Am. Chem. Soc. 1991, 113, 1856-7.

210. Sun, H.; Lang, Z.; Zhao, Y.; et al. Copper-bridged tetrakis(4-ethynylphenyl)ethene aggregates with photo-regulated 1O2 and O2·- generation for selective photocatalytic aerobic oxidation. Angew. Chem. Int. Ed. Engl. 2022, 61, e202202914.

211. Jiang, K.; Yan, P.; Shi, P.; et al. Two-dimensional silver-isocyanide frameworks. Angew. Chem. Int. Ed. Engl. 2025, 64, e202417658.

212. Zou, H.; Liu, L.; Zhang, S.; et al. Different stepwise growth mechanism of AIE-active tetraphenylethylene-functionalized metal-organic frameworks on Au(111) and Cu(111) surfaces. J. Phys. Chem. Lett. 2023, 14, 489-98.

213. Xing, G.; Peng, D.; Ben, T. Crystalline porous organic salts. Chem. Soc. Rev. 2024, 53, 1495-513.

214. O’Shaughnessy, M.; Glover, J.; Hafizi, R.; et al. Porous isoreticular non-metal organic frameworks. Nature 2024, 630, 102-8.

215. Wang, J.; Deng, W.; Han, Y.; Chen, J.; Qiu, H. Supramolecular ionic nanomaterials via ionic self-assembly with high thermal and water stability for the detection of trinitrophenol. ACS. Appl. Nano. Mater. 2024, 7, 19473-80.

216. Yang, Y.; Chen, X.; Li, X.; Zhao, F.; Bai, X.; Cao, L. Enhanced proton conduction of crystalline organic salt hybrid membranes and the performance of fuel cells. Mater. Chem. Front. 2022, 6, 3402-8.

217. Chen, X. Y.; Cao, L. H.; Yang, Y.; et al. Water-induced single-crystal to single-crystal transformation of ionic hydrogen-bonded organic frameworks with enhanced proton conductivity. Chemistry 2023, 29, e202300028.

218. Huang, M. F.; Cao, L. H.; Zhou, B. A solvent-controlled photoresponsive ionic hydrogen-bonded organic framework for encryption applications. Chem. Commun. 2024, 60, 3437-40.

219. Hu, H.; Zeng, D.; Ming, J. B.; Yan, Y.; Wang, W. Highly efficient multicolor-emitting tetraphenylethylene-based organic salts with commercialization prospects. ACS. Appl. Mater. Interfaces. 2024, 16, 36851-61.

220. Wang, J.; Yang, S.; Zhang, L.; et al. Constructing flexible crystalline porous organic salts via a zwitterionic strategy. J. Am. Chem. Soc. 2024, 146, 31042-52.

221. Zhai, Q. G.; Bu, X.; Zhao, X.; Li, D. S.; Feng, P. Pore space partition in metal-organic frameworks. Acc. Chem. Res. 2017, 50, 407-17.

222. Xu, X.; Gao, L.; Yuan, S. Stepwise construction of multi-component metal-organic frameworks. Dalton. Trans. 2023, 52, 15233-52.

223. Yi, F. Y.; Chen, D.; Wu, M. K.; Han, L.; Jiang, H. L. Chemical sensors based on metal-organic frameworks. Chempluschem 2016, 81, 675-90.

224. Olorunyomi, J. F.; Geh, S. T.; Caruso, R. A.; Doherty, C. M. Metal-organic frameworks for chemical sensing devices. Mater. Horiz. 2021, 8, 2387-419.

225. Raja Lakshmi, P.; Nanjan, P.; Kannan, S.; Shanmugaraju, S. Recent advances in luminescent metal–organic frameworks (LMOFs) based fluorescent sensors for antibiotics. Coord. Chem. Rev. 2021, 435, 213793.

226. Yuan, H.; Li, N.; Fan, W.; Cai, H.; Zhao, D. Metal-organic framework based gas sensors. Adv. Sci. 2022, 9, e2104374.

227. Zhang, L. T.; Zhou, Y.; Han, S. T. The role of metal-organic frameworks in electronic sensors. Angew. Chem. Int. Ed. Engl. 2021, 60, 15192-212.

228. Mandal, S.; Natarajan, S.; Mani, P.; Pankajakshan, A. Post-synthetic modification of metal–organic frameworks toward applications. Adv. Funct. Mater. 2021, 31, 2006291.

229. Liu, X.; Yang, X.; Xiang, S.; Lv, Y.; Zhang, Z. Coordination-defect-driven construction of responsive pure-MOF microspheres for switchable mode-dependent anticounterfeiting labels. ACS. Appl. Mater. Interfaces. 2025, 17, 2063-71.

230. He, W.; Lv, D.; Guan, Y.; Yu, S. Post-synthesis modification of metal–organic frameworks: synthesis, characteristics, and applications. J. Mater. Chem. A. 2023, 11, 24519-50.

231. Demir Duman, F.; Forgan, R. S. Applications of nanoscale metal-organic frameworks as imaging agents in biology and medicine. J. Mater. Chem. B. 2021, 9, 3423-49.

232. Ge, X.; Wong, R.; Anisa, A.; Ma, S. Recent development of metal-organic framework nanocomposites for biomedical applications. Biomaterials 2022, 281, 121322.

233. Song, Y.; Xu, X.; Wang, Z.; Zhao, Y. Metal-organic framework-based nanomedicines for ferroptotic cancer therapy. Adv. Healthc. Mater. 2024, 13, e2303533.

234. Chua, M. H.; Chin, K. L. O.; Loh, X. J.; Zhu, Q.; Xu, J. Aggregation-induced emission-active nanostructures: beyond biomedical applications. ACS. Nano. 2023, 17, 1845-78.

235. Xu, R.; Zhang, P.; Shen, Q.; et al. AIE nanocrystals: emerging nanolights with ultra-high brightness for biological application. Coord. Chem. Rev. 2023, 477, 214944.

236. Sharath Kumar, K. S.; Girish, Y. R.; Ashrafizadeh, M.; et al. AIE-featured tetraphenylethylene nanoarchitectures in biomedical application: bioimaging, drug delivery and disease treatment. Coord. Chem. Rev. 2021, 447, 214135.

237. Sun, Q.; Hao, Z.; Li, J.; et al. Dual discrimination of fast neutrons from strong γ noise using organic single-crystal scintillator. Matter 2023, 6, 274-84.

238. Du, X.; Zhao, S.; Wang, L.; et al. Efficient and ultrafast organic scintillators by hot exciton manipulation. Nat. Photon. 2024, 18, 162-9.

239. Liu, K.; Sharifzadeh, Z.; Rouhani, F.; Ghorbanloo, M.; Morsali, A. Metal-organic framework composites as green/sustainable catalysts. Coord. Chem. Rev. 2021, 436, 213827.

240. Ma, M.; Lu, X.; Guo, Y.; Wang, L.; Liang, X. Combination of metal-organic frameworks (MOFs) and covalent organic frameworks (COFs): recent advances in synthesis and analytical applications of MOF/COF composites. TrAC. Trends. Anal. Chem. 2022, 157, 116741.

241. Peng, Y.; Xu, J.; Xu, J.; et al. Metal-organic framework (MOF) composites as promising materials for energy storage applications. Adv. Colloid. Interface. Sci. 2022, 307, 102732.

242. Liu, K.; Bigdeli, F.; Panjehpour, A.; et al. Metal organic framework composites for reduction of CO2. Coord. Chem. Rev. 2023, 493, 215257.

243. Ying, Y. M.; Tao, C. L.; Yu, M.; et al. In situ encapsulation of pyridine-substituted tetraphenylethene cations in metal–organic framework for the detection of antibiotics in aqueous medium. J. Mater. Chem. C. 2019, 7, 8383-8.

244. Qiu, Z. J.; Fan, S. T.; Xing, C. Y.; et al. Facile fabrication of an AIE-active metal-organic framework for sensitive detection of explosives in liquid and solid phases. ACS. Appl. Mater. Interfaces. 2020, 12, 55299-307.

245. Xiong, X.; Xiong, C.; Gao, Y.; et al. Tetraphenylethylene-functionalized metal-organic frameworks with strong aggregation-induced electrochemiluminescence for ultrasensitive analysis through a multiple convertible resonance energy transfer system. Anal. Chem. 2022, 94, 7861-7.

246. Hu, F.; Mao, D.; Kenry, .; et al. Metal–organic framework as a simple and general inert nanocarrier for photosensitizers to implement activatable photodynamic therapy. Adv. Funct. Mater. 2018, 28, 1707519.

247. Huang, R.; Yu, Z.; Li, Z.; et al. Photoluminescent metal-organic frameworks and their composites: fundamentals, applications, and outlooks. Coord. Chem. Rev. 2025, 526, 216358.

248. Rosen, A. S.; Iyer, S. M.; Ray, D.; et al. Machine learning the quantum-chemical properties of metal–organic frameworks for accelerated materials discovery. Matter 2021, 4, 1578-97.

249. Ozcan, A.; Coudert, F. X.; Rogge, S. M. J.; et al. Artificial intelligence paradigms for next-generation metal-organic framework research. J. Am. Chem. Soc. 2025, 147, 23367-80.

250. Zheng, Z.; Rampal, N.; Inizan, T. J.; Borgs, C.; Chayes, J. T.; Yaghi, O. M. Large language models for reticular chemistry. Nat. Rev. Mater. 2025, 10, 369-81.

Chemical Synthesis
ISSN 2769-5247 (Online)

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/