REFERENCES
1. Ramesh, R.; Reddy, D. S. Quest for novel chemical entities through incorporation of silicon in drug scaffolds. J. Med. Chem. 2018, 61, 3779-98.
2. Sore, H. F.; Galloway, W. R. J. D.; Spring, D. R. Palladium-catalysed cross-coupling of organosilicon reagents. Chem. Soc. Rev. 2012, 41, 1845-66.
3. Franz, A. K.; Wilson, S. O. Organosilicon molecules with medicinal applications. J. Med. Chem. 2013, 56, 388-405.
4. Langkopf, E.; Schinzer, D. Uses of silicon-containing compounds in the synthesis of natural products. Chem. Rev. 1995, 95, 1375-408.
5. Hiyama, T.; Oestreich, M. Organosilicon chemistry: novel approaches and reactions. Wiley-VCH: Weinheim; 2019.
6. Li, B.; Dixneuf, P. H. Metal-catalyzed silylation of sp3C-H bonds. Chem. Soc. Rev. 2021, 50, 5062-85.
7. Du, X.; Huang, Z. Advances in base-metal-catalyzed alkene hydrosilylation. ACS. Catal. 2017, 7, 1227-43.
8. Richter, S. C.; Oestreich, M. Emerging strategies for C–H silylation. Trends. Chem. 2020, 2, 13-27.
10. Korch, K. M.; Watson, D. A. Cross-coupling of heteroatomic electrophiles. Chem. Rev. 2019, 119, 8192-228.
11. Murakami, K.; Hirano, K.; Yorimitsu, H.; Oshima, K. Silver-catalyzed transmetalation between chlorosilanes and aryl and alkenyl Grignard reagents for the synthesis of tetraorganosilanes. Angew. Chem. Int. Ed. Engl. 2008, 47, 5833-5.
12. Cinderella, A. P.; Vulovic, B.; Watson, D. A. Palladium-catalyzed cross-coupling of silyl electrophiles with alkylzinc halides: a silyl-negishi reaction. J. Am. Chem. Soc. 2017, 139, 7741-4.
13. Vulovic, B.; Cinderella, A. P.; Watson, D. A. Palladium-catalyzed cross-coupling of monochlorosilanes and grignard reagents. ACS. Catal. 2017, 7, 8113-7.
14. Naganawa, Y.; Guo, H.; Sakamoto, K.; Nakajima, Y. Nickel-catalyzed selective cross-coupling of chlorosilanes with organoaluminum reagents. ChemCatChem 2019, 11, 3756-9.
15. Chu, C. K.; Liang, Y.; Fu, G. C. Silicon-carbon bond formation via nickel-catalyzed cross-coupling of silicon nucleophiles with unactivated secondary and tertiary alkyl electrophiles. J. Am. Chem. Soc. 2016, 138, 6404-7.
16. Xue, W.; Qu, Z. W.; Grimme, S.; Oestreich, M. Copper-catalyzed cross-coupling of silicon pronucleophiles with unactivated alkyl electrophiles coupled with radical cyclization. J. Am. Chem. Soc. 2016, 138, 14222-5.
17. Xue, W.; Shishido, R.; Oestreich, M. Bench-stable stock solutions of silicon grignard reagents: application to iron- and cobalt-catalyzed radical C(sp3)-Si cross-coupling reactions. Angew. Chem. Int. Ed. Engl. 2018, 57, 12141-5.
18. Zarate, C.; Nakajima, M.; Martin, R. A mild and ligand-free Ni-catalyzed silylation via C-OMe cleavage. J. Am. Chem. Soc. 2017, 139, 1191-7.
19. Yamanoi, Y.; Taira, T.; Sato, J.; Nakamula, I.; Nishihara, H. Efficient preparation of monohydrosilanes using palladium-catalyzed Si-C bond formation. Org. Lett. 2007, 9, 4543-6.
20. Hamze, A.; Provot, O.; Alami, M.; Brion, J. D. Platinum oxide catalyzed silylation of aryl halides with triethylsilane: an efficient synthetic route to functionalized aryltriethylsilanes. Org. Lett. 2006, 8, 931-4.
21. Yuan, W.; Smirnov, P.; Oestreich, M. Custom hydrosilane synthesis based on monosilane. Chem 2018, 4, 1443-50.
22. Yuan, W.; Orecchia, P.; Oestreich, M. Palladium-catalyzed three-component reaction of dihydrosilanes and vinyl iodides in the presence of alcohols: rapid assembly of silyl ethers of tertiary silanes. Chem. Eur. J. 2018, 24, 19175-8.
23. Sun, H.; Cheng, Y.; Teng, H.; et al. 3-Alkyl-2-pyridyl directing group-enabled C2 selective C-H silylation of indoles and pyrroles via an iridium catalyst. J. Org. Chem. 2022, 87, 13346-51.
24. Liu, S.; Robert, F.; Landais, Y. Dual photoredox nickel-catalyzed silylation of aryl/heteroaryl bromides using hydrosilanes. Chem. Commun. 2023, 59, 11369-72.
25. Neil, B.; Lucien, F.; Fensterbank, L.; Chauvier, C. Transition-metal-free silylation of unactivated C(sp2)–H bonds with tert-butyl-substituted silyldiazenes. ACS. Catal. 2021, 11, 13085-90.
26. Weix, D. J. Methods and mechanisms for cross-electrophile coupling of Csp2 halides with alkyl electrophiles. Acc. Chem. Res. 2015, 48, 1767-75.
27. Gu, J.; Wang, X.; Xue, W.; Gong, H. Nickel-catalyzed reductive coupling of alkyl halides with other electrophiles: concept and mechanistic considerations. Org. Chem. Front. 2015, 2, 1411-21.
28. Yi, L.; Ji, T.; Chen, K.; Chen, X.; Rueping, M. Nickel-catalyzed reductive cross-couplings: new opportunities for carbon–carbon bond formations through photochemistry and electrochemistry. CCS. Chem. 2022, 4, 9-30.
29. Qian, P.; Guan, H.; Wang, Y. E.; et al. Catalytic enantioselective reductive domino alkyl arylation of acrylates via nickel/photoredox catalysis. Nat. Commun. 2021, 12, 6613.
30. Yang, Y.; Pang, X.; Shu, X. Transition-metal-catalyzed cross-coupling of chlorosilanes. Synthesis 2023, 55, 868-76.
31. Pang, X.; Shu, X. Z. Nickel-catalyzed reductive coupling of chlorosilanes. Chem. Eur. J. 2023, 29, e202203362.
32. Duan, J.; Wang, K.; Xu, G. L.; et al. Cross-electrophile C(sp2)-Si coupling of vinyl chlorosilanes. Angew. Chem. Int. Ed. Engl. 2020, 59, 23083-8.
33. Pan, Q. Q.; Qi, L.; Pang, X.; Shu, X. Z. Nickel-catalyzed cross-electrophile 1,2-silyl-arylation of 1,3-dienes with chlorosilanes and aryl bromides. Angew. Chem. Int. Ed. Engl. 2023, 62, e202215703.
34. Zhao, Z. Z.; Pang, X.; Wei, X. X.; Liu, X. Y.; Shu, X. Z. Nickel-catalyzed reductive C(sp2)-Si coupling of chlorohydrosilanes via Si-Cl cleavage. Angew. Chem. Int. Ed. Engl. 2022, 61, e202200215.
35. Qi, L.; Pan, Q. Q.; Wei, X. X.; Pang, X.; Liu, Z.; Shu, X. Z. Nickel-catalyzed reductive [4 + 1] sila-cycloaddition of 1,3-dienes with dichlorosilanes. J. Am. Chem. Soc. 2023, 145, 13008-14.
36. Duan, J.; Wang, Y.; Qi, L.; Guo, P.; Pang, X.; Shu, X. Z. Nickel-catalyzed cross-electrophile C(sp3)-Si coupling of unactivated alkyl bromides with vinyl chlorosilanes. Org. Lett. 2021, 23, 7855-9.
37. Qi, L.; Pang, X.; Yin, K.; Pan, Q.; Wei, X.; Shu, X. Mn-mediated reductive C(sp3)–Si coupling of activated secondary alkyl bromides with chlorosilanes. Chin. Chem. Lett. 2022, 33, 5061-4.
38. Pang, X.; Su, P. F.; Shu, X. Z. Reductive cross-coupling of unreactive electrophiles. Acc. Chem. Res. 2022, 55, 2491-509.
39. Zhang, L.; Oestreich, M. Nickel-catalyzed, reductive C(sp3)-Si cross-coupling of α-cyano alkyl electrophiles and chlorosilanes. Angew. Chem. Int. Ed. Engl. 2021, 60, 18587-90.
40. Xing, M.; Cui, H.; Zhang, C. Nickel-catalyzed reductive cross-coupling of alkyl bromides and chlorosilanes. Org. Lett. 2021, 23, 7645-9.
41. Sun, J.; Zhou, Y.; Gu, R.; Li, X.; Liu, A.; Zhang, X. Regioselective Ni-catalyzed reductive alkylsilylation of acrylonitrile with unactivated alkyl bromides and chlorosilanes. Nat. Commun. 2022, 13, 7093.
42. Xing, D.; Liu, J.; Cai, D.; Huang, B.; Jiang, H.; Huang, L. Cobalt-catalyzed cross-electrophile coupling of alkynyl sulfides with unactivated chlorosilanes. Nat. Commun. 2024, 15, 4502.
43. Li, C.; Yang, S.; Zeng, X. Cross-electrophile silylation of aryl carboxylic esters with hydrochlorosilanes by SiH-directed and Cr-catalyzed couplings. ACS. Catal. 2023, 13, 12062-73.
44. Zhao, H.; Yuan, W. Three-component reductive conjugate addition/aldol tandem reaction enabled by nickel/photoredox dual catalysis. Chem. Sci. 2023, 14, 1485-90.
45. Liu, J.; Chen, Y.; Zhao, H.; Yuan, W. Nickel/photoredox dual-catalyzed reductive cross-coupling of aryl halides and aldehydes. Org. Chem. Front. 2024, 11, 1205-10.
46. Xi, X.; Luo, Y.; Li, W.; et al. From esters to ketones via a photoredox-assisted reductive acyl cross-coupling strategy. Angew. Chem. Int. Ed. Engl. 2022, 61, e202114731.
47. Xi, X.; Chen, Y.; Yuan, W. Nickel-catalyzed three-component alkylacylation of alkenes enabled by a photoactive electron donor-acceptor complex. Org. Lett. 2022, 24, 3938-43.
48. Chen, Y.; Xi, X.; Yuan, W. Photoinduced nickel-catalyzed reductive acyl cross-coupling: facile access to all carbon quaternary aliphatic ketones. Org. Chem. Front. 2023, 10, 3669-75.
49. Shields, B. J.; Doyle, A. G. Direct C(sp3)-H cross coupling enabled by catalytic generation of chlorine radicals. J. Am. Chem. Soc. 2016, 138, 12719-22.
50. Prier, C. K.; Rankic, D. A.; MacMillan, D. W. Visible light photoredox catalysis with transition metal complexes: applications in organic synthesis. Chem. Rev. 2013, 113, 5322-63.
51. Zhang, P.; Le, C. C.; MacMillan, D. W. Silyl radical activation of alkyl halides in metallaphotoredox catalysis: a unique pathway for cross-electrophile coupling. J. Am. Chem. Soc. 2016, 138, 8084-7.
52. Cong, F.; Lv, X. Y.; Day, C. S.; Martin, R. Dual catalytic strategy for forging sp2-sp3 and sp3-sp3 architectures via β-scission of aliphatic alcohol derivatives. J. Am. Chem. Soc. 2020, 142, 20594-9.
53. Yi, J.; Badir, S. O.; Kammer, L. M.; Ribagorda, M.; Molander, G. A. Deaminative reductive arylation enabled by nickel/photoredox dual catalysis. Org. Lett. 2019, 21, 3346-51.