REFERENCES

1. Seufitelli, G. V.; Park, J. J.; Tran, P. N.; Dichiara, A.; Resende, F. L.; Gustafson, R. Kinetics of ethylene oligomerization over Ni-H-Beta catalysts. J. Catal. 2021, 401, 40-53.

2. Tang, X.; Wu, Y.; Fang, Z.; et al. Syntheses, catalytic performances and DFT investigations: a recent review of copper-based catalysts of methanol steam reforming for hydrogen production. Energy 2024, 295, 131091.

3. Wang, S.; Cao, M.; Sun, S.; et al. Selective hydroisomerization of isobutane to n-butane over WO3-ZrO2 supported Ni-Cu alloy. Fuel 2020, 280, 118274.

4. Tang, R.; Zhang, J.; Shen, Z.; Li, T.; Luo, J.; Yang, T. Isomerization performance of n-hexane in hydrogen atmosphere over the multistage porous composite NixPy-MCM-41/MOR catalyst. J. Energy. Inst. 2024, 114, 101652.

5. Morávková, J.; Pilař, R.; Bortnovsky, O.; et al. The effect of the nanoscale intimacy of platinum and acid centres on the hydroisomerization of short-chain alkanes. Appl. Catal. A. Gen. 2022, 634, 118535.

6. Ma, L.; Yan, L.; Lu, A.; Ding, Y. Effects of Ni particle size on amination of monoethanolamine over Ni-Re/SiO2 catalysts. Chin. J. Catal. 2019, 40, 567-79.

7. Lyu, Y.; Yu, Z.; Yang, Y.; et al. Metal-acid balance in the in-situ solid synthesized Ni/SAPO-11 catalyst for n-hexane hydroisomerization. Fuel 2019, 243, 398-405.

8. Chen, J.; Zhong, J.; Wu, Y.; et al. Particle size effects in stoichiometric methane combustion: structure-activity relationship of Pd catalyst supported on gamma-alumina. ACS. Catal. 2020, 10, 10339-49.

9. Ostgard, D. The mechanism of hydrogenolysis and isomerization of oxacycloalkanes on metals IX. structure sensitive hydrogenolysis and isomerization of methyloxirane over well-characterized Pt/SiO2 Catalysts*1. J. Catal. 1991, 129, 519-23.

10. Ebadi, H. Tracking of azobenzene isomerization by X-ray emission spectroscopy. J. Phys. Chem. A. 2014, 118, 7832-7.

11. Liu, L.; Corma, A. Metal catalysts for heterogeneous catalysis: from single atoms to nanoclusters and nanoparticles. Chem. Rev. 2018, 118, 4981-5079.

12. Baudouin, D.; Rodemerck, U.; Krumeich, F.; et al. Particle size effect in the low temperature reforming of methane by carbon dioxide on silica-supported Ni nanoparticles. J. Catal. 2013, 297, 27-34.

13. Roduner, E. Size matters: why nanomaterials are different. Chem. Soc. Rev. 2006, 35, 583.

14. Calle-vallejo, F.; Loffreda, D.; Koper, M. T. M.; Sautet, P. Introducing structural sensitivity into adsorption-energy scaling relations by means of coordination numbers. Nature. Chem. 2015, 7, 403-10.

15. Cao, S.; Tao, F.; Tang, Y.; Li, Y.; Yu, J. Size- and shape-dependent catalytic performances of oxidation and reduction reactions on nanocatalysts. Chem. Soc. Rev. 2016, 45, 4747-65.

16. Reske, R.; Mistry, H.; Behafarid, F.; Roldan, C. B.; Strasser, P. Particle size effects in the catalytic electroreduction of CO2 on Cu nanoparticles. J. Am. Chem. Soc. 2014, 136, 6978-86.

17. Li, L.; Larsen, A. H.; Romero, N. A.; et al. Investigation of catalytic finite-size-effects of platinum metal clusters. J. Phys. Chem. Lett. 2013, 4, 222-6.

18. Yan, Y.; Wang, Q.; Jiang, C.; et al. Ru/Al2O3 catalyzed CO2 hydrogenation: oxygen-exchange on metal-support interfaces. J. Catal. 2018, 367, 194-205.

19. Vajda, S.; Pellin, M. J.; Greeley, J. P.; et al. Subnanometre platinum clusters as highly active and selective catalysts for the oxidative dehydrogenation of propane. Nat. Mater. 2009, 8, 213-6.

20. Yang, J.; Fu, W.; Chen, C.; et al. Atomic design and fine-tuning of subnanometric Pt catalysts to tame hydrogen generation. ACS. Catal. 2021, 11, 4146-56.

21. Fernández, E.; Liu, L.; Boronat, M.; Arenal, R.; Concepcion, P.; Corma, A. Low-temperature catalytic NO reduction with CO by subnanometric Pt clusters. ACS. Catal. 2019, 9, 11530-41.

22. Du, Y.; Sheng, H.; Astruc, D.; Zhu, M. Atomically precise noble metal nanoclusters as efficient catalysts: a bridge between structure and properties. Chem. Rev. 2020, 120, 526-622.

23. Guo, X.; Gu, J.; Lin, S.; Zhang, S.; Chen, Z.; Huang, S. Tackling the activity and selectivity challenges of electrocatalysts toward the nitrogen reduction reaction via atomically dispersed biatom catalysts. J. Am. Chem. Soc. 2020, 142, 5709-21.

24. Pan, Y.; Zhang, C.; Liu, Z.; Chen, C.; Li, Y. Structural regulation with atomic-level precision: from single-atomic site to diatomic and atomic interface catalysis. Matter 2020, 2, 78-110.

25. Fan, L.; Zhao, L.; Lv, Y.; et al. Ionic liquid and lysine co-assisted synthesis of the highly dispersed Ni/SAPO-11 catalyst. Inorg. Chem. Front. 2022, 9, 3679-91.

26. Simonot-grange, M.; Waldeck, A.; Barthomeuf, D.; Weber, G. Contribution to the study of framework modification of SAPO-34 and SAPO-37 upon water adsorption by thermogravimetry. Thermochimica. Acta. 1999, 329, 77-82.

27. Briend, M.; Vomscheid, R.; Peltre, M. J.; Man, P. P.; Barthomeuf, D. Influence of the choice of the template on the short- and long-term stability of SAPO-34 zeolite. J. Phys. Chem. 1995, 99, 8270-6.

28. Yu, G.; Chen, X.; Xue, W.; et al. Melting-assisted solvent-free synthesis of SAPO-11 for improving the hydroisomerization performance of n-dodecane. Chin. J. Catal. 2020, 41, 622-30.

29. Liu, Q.; Gu, F.; Lu, X.; et al. Enhanced catalytic performances of Ni/Al2O3 catalyst via addition of V2O3 for CO methanation. Appl. Catal. A. Gen. 2014, 488, 37-47.

30. Gil, A.; Díaz, A.; Gandía, L.; Montes, M. Influence of the preparation method and the nature of the support on the stability of nickel catalysts. Appl. Catal. A. Gen. 1994, 109, 167-79.

31. Zhan, W.; Lyu, Y.; Liu, X.; Fan, L.; Li, F.; Yang, Y. The direct synthesis of Ni/SAPO-11 hydroisomerization catalyst via a novel two-step crystallization strategy. Pet. Sci. 2022, 19, 2448-59.

32. Liu, Q.; Zhong, Z.; Gu, F.; et al. CO methanation on ordered mesoporous Ni-Cr-Al catalysts: effects of the catalyst structure and Cr promoter on the catalytic properties. J. Catal. 2016, 337, 221-32.

33. Wang, T.; Zhang, W.; Li, Y.; et al. Quantitative synergy between metal and acid centers over the Ni/Beta bifunctional catalyst for methyl laurate hydrodeoxygenation to bio-jet fuel. Fuel. Process. Technol. 2023, 241, 107602.

34. Wang, L.; Li, Z.; Zhang, P.; Wang, G.; Xie, G. Hydrogen generation from alkaline NaBH4 solution using Co-Ni-Mo-P/γ-Al2O3 catalysts. Int. J. Hydrogen. Energy. 2016, 41, 1468-76.

35. Gao, J.; Jia, C.; Li, J.; et al. Ni/Al2O3 catalysts for CO methanation: effect of Al2O3 supports calcined at different temperatures. J. Energy. Chem. 2013, 22, 919-27.

36. Kharat, A.; Pendleton, P.; Badalyan, A.; Abedini, M.; Amini, M. Decomposition of nickel formate on sol-gel alumina and characterization of product by X-ray photoelectron and TOF-SIMS spectroscopies. J. Catal. 2002, 205, 7-15.

37. Liang, G.; Zhou, Y.; Zhao, J.; Khodakov, A. Y.; Ordomsky, V. V. Structure-sensitive and insensitive reactions in alcohol amination over nonsupported Ru nanoparticles. ACS. Catal. 2018, 8, 11226-34.

38. Lee, Y.; Oyama, S. Bifunctional nature of a SiO2-supported Ni2P catalyst for hydrotreating: EXAFS and FTIR studies. J. Catal. 2006, 239, 376-89.

39. Hu, C.; Chen, Y.; Li, P.; Min, H.; Chen, Y.; Tian, A. Temperature-programmed FT-IR study of the adsorption of CO and co-adsorption of CO and H2 on NiAl2O3. J. Mol. Catal. A:. Chem. 1996, 110, 163-9.

40. Poncelet, G.; Centeno, M.; Molina, R. Characterization of reduced α-alumina-supported nickel catalysts by spectroscopic and chemisorption measurements. Appl. Catal. A. Gen. 2005, 288, 232-42.

41. Råberg, L.; Jensen, M.; Olsbye, U.; et al. Propane dry reforming to synthesis gas over Ni-based catalysts: influence of support and operating parameters on catalyst activity and stability. J. Catal. 2007, 249, 250-60.

42. Liu, B.; Lusk, M. T.; Ely, J. F. Influence of Nickel catalyst geometry on the dissociation barriers of H2 and CH4 : Ni13 versus Ni(111). J. Phys. Chem. C. 2009, 113, 13715-22.

43. Mårtensson, A.; Nyberg, C.; Andersson, S. Adsorption of hydrogen on a stepped nickel surface. Surf. Sci. 1988, 205, 12-24.

44. Xiao, C.; Lu, B.; Xue, P.; et al. High-index-facet- and high-surface-energy nanocrystals of metals and metal oxides as highly efficient catalysts. Joule 2020, 4, 2562-98.

45. Hu, Q.; Gao, K.; Wang, X.; et al. Subnanometric Ru clusters with upshifted D band center improve performance for alkaline hydrogen evolution reaction. Nat. Commun. 2022, 13, 31660.

46. Ru, W.; Liu, Y.; Fu, B.; Fu, F.; Feng, J.; Li, D. Control of local electronic structure of Pd single atom catalyst by adsorbate induction. Small 2022, 18, e2103852.

47. Yang, X.; Li, Y.; Wang, Y.; Zheng, H.; Li, K.; Mao, H. Chemical transformations of n-hexane and cyclohexane under the upper mantle conditions. Geosci. Front. 2021, 12, 1010-7.

48. Grahn, M.; Holmgren, A.; Hedlund, J. Adsorption of n-hexane and p-Xylene in thin silicalite-1 films studied by FTIR/ATR spectroscopy. J. Phys. Chem. C. 2008, 112, 7717-24.

Chemical Synthesis
ISSN 2769-5247 (Online)

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/