REFERENCES
1. Gallezot, P. Process options for converting renewable feedstocks to bioproducts. Green. Chem. 2007, 9, 295.
2. He, Z.; Ning, X.; Yang, G.; et al. Selective oxidation of glycerol over supported noble metal catalysts. Catal. Today. 2021, 365, 162-71.
3. Walgode, P. M.; Faria, R. P. V.; Rodrigues, A. E. A review of aerobic glycerol oxidation processes using heterogeneous catalysts: a sustainable pathway for the production of dihydroxyacetone. Catal. Rev. 2021, 63, 422-511.
4. Zope, B. N.; Hibbitts, D. D.; Neurock, M.; Davis, R. J. Reactivity of the gold/water interface during selective oxidation catalysis. Science 2010, 330, 74-8.
5. Demirel-gülen, S.; Lucas, M.; Claus, P. Liquid phase oxidation of glycerol over carbon supported gold catalysts. Catal. Today. 2005, 102-103, 166-72.
6. Garcia, A. C.; Kolb, M. J.; van, N. S. C.; et al. Strong impact of platinum surface structure on primary and secondary alcohol oxidation during electro-oxidation of glycerol. ACS. Catal. 2016, 6, 4491-500.
7. Liang, D.; Gao, J.; Wang, J.; Chen, P.; Hou, Z.; Zheng, X. Selective oxidation of glycerol in a base-free aqueous solution over different sized Pt catalysts. Catal. Commun. 2009, 10, 1586-90.
8. Ribeiro, L. S.; Rodrigues, E. G.; Delgado, J. J.; Chen, X.; Pereira, M. F. R.; Órfão, J. J. M. Pd, Pt, and Pt-Cu catalysts supported on carbon nanotube (CNT) for the selective oxidation of glycerol in alkaline and base-free conditions. Ind. Eng. Chem. Res. 2016, 55, 8548-56.
9. Mondelli, C.; Ferri, D.; Grunwaldt, J.; et al. Combined liquid-phase ATR-IR and XAS study of the Bi-promotion in the aerobic oxidation of benzyl alcohol over Pd/Al2O3. J. Catal. 2007, 252, 77-87.
10. Fernández-caso, K.; Molera, M.; Andreu, T.; et al. Coupling glycerol oxidation reaction using Ni-Co foam anodes to CO2 electroreduction in gas-phase for continuous co-valorization. Chem. Eng. J. 2024, 480, 147908.
11. Purushothaman, R. K. P.; van, H. J.; van, E. D.; Melián-cabrera, I.; Meeldijk, J.; Heeres, H. An efficient one pot conversion of glycerol to lactic acid using bimetallic gold-platinum catalysts on a nanocrystalline CeO2 support. Appl. Catal. B. Environ. 2014, 147, 92-100.
12. Roz A, Fongarland P, Dumeignil F, Capron M. Glycerol to glyceraldehyde oxidation reaction over pt-based catalysts under base-free conditions. Front. Chem. 2019, 7, 156.
13. Kimura, H.; Tsuto, K.; Wakisaka, T.; Kazumi, Y.; Inaya, Y. Selective oxidation of glycerol on a platinum-bismuth catalyst. Appl. Catal. A. Gen. 1993, 96, 217-28.
14. Garcia, R.; Besson, M.; Gallezot, P. Chemoselective catalytic oxidation of glycerol with air on platinum metals. Appl. Catal. A. Gen. 1995, 127, 165-76.
15. Hu, W.; Knight, D.; Lowry, B.; Varma, A. Selective oxidation of glycerol to dihydroxyacetone over Pt-Bi/C catalyst: optimization of catalyst and reaction conditions. Ind. Eng. Chem. Res. 2010, 49, 10876-82.
16. Ning, X.; Li, Y.; Yu, H.; Peng, F.; Wang, H.; Yang, Y. Promoting role of bismuth and antimony on Pt catalysts for the selective oxidation of glycerol to dihydroxyacetone. J. Catal. 2016, 335, 95-104.
17. Zhang, B.; Jiang, Y.; Ren, J.; Qu, X.; Xu, G.; Sun, S. PtBi intermetallic and PtBi intermetallic with the Bi-rich surface supported on porous graphitic carbon towards HCOOH electro-oxidation. Electrochim. Acta. 2015, 162, 254-62.
18. Feng, Y.; Shao, Q.; Lv, F.; et al. Intermetallic PtBi Nanoplates boost oxygen reduction catalysis with superior tolerance over chemical fuels. Adv. Sci. 2020, 7, 1800178.
19. Xue, W.; Wang, Z.; Liang, Y.; Xu, H.; Liu, L.; Dong, J. Promoting role of bismuth on hydrotalcite-supported platinum catalysts in aqueous phase oxidation of glycerol to dihydroxyacetone. Catalysts 2018, 8, 20.
20. Nie, R.; Liang, D.; Shen, L.; Gao, J.; Chen, P.; Hou, Z. Selective oxidation of glycerol with oxygen in base-free solution over MWCNTs supported PtSb alloy nanoparticles. Appl. Catal. B. Environ. 2012, 127, 212-20.
21. Xiao, Y.; Greeley, J.; Varma, A.; Zhao, Z.; Xiao, G. An experimental and theoretical study of glycerol oxidation to 1,3-dihydroxyacetone over bimetallic Pt-Bi catalysts. AIChE. J. 2017, 63, 705-15.
22. Chen, R.; Chen, S.; Wang, L.; Wang, D. Nanoscale metal particle modified single-atom catalyst: synthesis, characterization, and application. Adv. Mater. 2024, 36, e2304713.
23. Kuai, L.; Chen, Z.; Liu, S.; et al. Titania supported synergistic palladium single atoms and nanoparticles for room temperature ketone and aldehydes hydrogenation. Nat. Commun. 2020, 11, 48.
24. Zhang, J.; Wang, M.; Gao, Z.; et al. Importance of species heterogeneity in supported metal catalysts. J. Am. Chem. Soc. 2022, 144, 5108-15.
25. Yang, H.; Gao, S.; Rao, D.; Yan, X. Designing superior bifunctional electrocatalyst with high-purity pyrrole-type CoN4 and adjacent metallic cobalt sites for rechargeable Zn-air batteries. Energy. Storage. Mater. 2022, 46, 553-62.
26. He, Z.; Yang, G.; Wang, H.; Dai, F.; Peng, F.; Yu, H. Co-N-C-supported platinum catalyst: synergistic effect on the aerobic oxidation of glycerol. ACS. Sustainable. Chem. Eng. 2020, 8, 19062-71.
27. Huang, N.; Zhang, Z.; Lu, Y.; et al. Assembly of platinum nanoparticles and single-atom bismuth for selective oxidation of glycerol. J. Mater. Chem. A. 2021, 9, 25576-84.
28. Liu, X.; Ao, C.; Shen, X.; et al. Dynamic surface reconstruction of single-atom bimetallic alloy under operando electrochemical conditions. Nano. Lett. 2020, 20, 8319-25.
29. Jia, L.; Bulushev, D. A.; Podyacheva, O. Y.; et al. Pt nanoclusters stabilized by N-doped carbon nanofibers for hydrogen production from formic acid. J. Catal. 2013, 307, 94-102.
30. Ning, X.; Li, Y.; Dong, B.; et al. Electron transfer dependent catalysis of Pt on N-doped carbon nanotubes: effects of synthesis method on metal-support interaction. J. Catal. 2017, 348, 100-9.
31. Kresse, G.; Hafner, J. Ab initio molecular dynamics for open-shell transition metals. Phys. Rev. B. Condens. Matter. 1993, 48, 13115-8.
32. Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B. Condens. Matter. 1996, 54, 11169-86.
33. Kresse, G.; Hafner, J. Ab initio molecular-dynamics simulation of the liquid-metal-amorphous-semiconductor transition in germanium. Phys. Rev. B. Condens. Matter. 1994, 49, 14251-69.
34. Kresse, G.; Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 1996, 6, 15-50.
35. Kresse, G.; Hafner, J. Ab initio molecular dynamics for liquid metals. Phys. Rev. B. Condens. Matter. 1993, 47, 558-61.
36. Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B. 1999, 59, 1758-75.
37. Sun, X.; Gao, X.; Chen, J.; et al. Ultrasmall Ru nanoparticles highly dispersed on sulfur-doped graphene for HER with high electrocatalytic performance. ACS. Appl. Mater. Interfaces. 2020, 12, 48591-7.
38. He, Z.; Dong, B.; Wang, W.; et al. Elucidating interaction between palladium and N-doped carbon nanotubes: effect of electronic property on activity for nitrobenzene hydrogenation. ACS. Catal. 2019, 9, 2893-901.
39. Wang, W.; Yang, G.; Wang, Q.; Cao, Y.; Wang, H.; Yu, H. Modifying carbon nanotubes supported palladium nanoparticles via regulating the electronic metal–carbon interaction for phenol hydrogenation. Chem. Eng. J. 2022, 436, 131758.
40. Ao, X.; Zhang, W.; Zhao, B.; et al. Atomically dispersed Fe-N-C decorated with Pt-alloy core-shell nanoparticles for improved activity and durability towards oxygen reduction. Energy. Environ. Sci. 2020, 13, 3032-40.
41. Li, X.; He, Y.; Cheng, S.; et al. Atomic structure evolution of pt-co binary catalysts: single metal sites versus intermetallic nanocrystals. Adv. Mater. 2021, 33, e2106371.
42. Zhang, H.; Tang, T.; Wang, H.; Wang, H.; Cao, Y.; Yu, H. Topological conversion of nickel foams to monolithic single-atom catalysts. Adv. Funct. Mater. 2024, 34, 2312939.
43. Zhang, M.; Li, H.; Chen, J.; et al. A low-cost, durable bifunctional electrocatalyst containing atomic Co and Pt species for flow alkali-Al/acid hybrid fuel cell and Zn-Air battery. Adv. Funct. Mater. 2023, 33, 2303189.
44. Liang, L.; Jin, H.; Zhou, H.; et al. Cobalt single atom site isolated Pt nanoparticles for efficient ORR and HER in acid media. Nano. Energy. 2021, 88, 106221.
45. Gong, L.; Zhu, J.; Xia, F.; et al. Marriage of ultralow platinum and single-atom MnN4 moiety for augmented ORR and HER catalysis. ACS. Catal. 2023, 13, 4012-20.
46. Zeng, Y.; Liang, J.; Li, C.; et al. Regulating catalytic properties and thermal stability of Pt and PtCo Intermetallic fuel-cell catalysts via strong coupling effects between single-metal site-rich carbon and Pt. J. Am. Chem. Soc. 2023, 145, 17643-55.
47. Song, Z.; Wang, X.; Wu, D.; Fu, X.; Zhang, L.; Luo, J. Nitrogen-coordinated cobalt single atoms for achieving pt with superhigh power and stability in proton exchange membrane fuel cells. ACS. Sustainable. Chem. Eng. 2023, 11, 9804-15.
48. Zhao, T.; Li, Y.; Liu, J.; et al. Highly dispersed L12-Pt3Fe intermetallic particles supported on single atom Fe-Nx-Cy active sites for enhanced activity and durability towards oxygen reduction. Chin. Chem. Lett. 2023, 34, 107824.
49. Guan, J.; Yang, S.; Liu, T.; et al. Intermetallic FePt@PtBi core-shell nanoparticles for oxygen reduction electrocatalysis. Angew. Chem. Int. Ed. Engl. 2021, 60, 21899-904.
50. Wang, Z.; Wang, C.; Hu, Y.; et al. Simultaneous diffusion of cation and anion to access N, S co-coordinated Bi-sites for enhanced CO2 electroreduction. Nano. Res. 2021, 14, 2790-6.
51. Zhang, E.; Wang, T.; Yu, K.; et al. Bismuth single atoms resulting from transformation of metal-organic frameworks and their use as electrocatalysts for CO2 reduction. J. Am. Chem. Soc. 2019, 141, 16569-73.
52. Yue, B.; Ma, Y.; Tao, H.; et al. CNx nanotubes as catalyst support to immobilize platinum nanoparticles for methanol oxidation. J. Mater. Chem. 2008, 18, 1747.
53. Chen, W.; Ji, J.; Duan, X.; et al. Unique reactivity in Pt/CNT catalyzed hydrolytic dehydrogenation of ammonia borane. Chem. Commun. 2014, 50, 2142-4.
54. Ning, X.; Yu, H.; Peng, F.; Wang, H. Pt nanoparticles interacting with graphitic nitrogen of N-doped carbon nanotubes: effect of electronic properties on activity for aerobic oxidation of glycerol and electro-oxidation of CO. J. Catal. 2015, 325, 136-44.
55. Moulder, J.; Stickle, W.; Sobol, W.; Bomben, K. D. Handbook of X-ray photoelectron spectroscopy. 1992. Available from: https://www.semanticscholar.org/paper/Handbook-of-X-Ray-Photoelectron-Spectroscopy-Moulder-Stickle/6165d59e158c88267b1154c167da68bfca644f4a. [Last accessed on 9 Oct 2024].
56. Ge, S.; Fan, W.; Tang, X.; et al. Revealing the size effect of ceria nanocube-supported platinum nanoparticles in complete propane oxidation. ACS. Catal. 2024, 14, 2532-44.
57. Tong, T.; Liu, X.; Guo, Y.; Norouzi, B. M.; Hu, Y.; Wang, Y. The critical role of CeO2 crystal-plane in controlling Pt chemical states on the hydrogenolysis of furfuryl alcohol to 1,2-pentanediol. J. Catal. 2018, 365, 420-8.
58. Quan, L.; Chen, X.; Liu, J.; Fan, S.; Xia, B. Y.; You, B. Atomic Pt-N4 sites in porous N-doped nanocarbons for enhanced on-site chlorination coupled with H2 evolution in acidic water. Adv. Funct. Mater. 2023, 33, 2307643.
59. Lei, J.; Duan, X.; Qian, G.; Zhou, X.; Chen, D. Size effects of Pt nanoparticles supported on carbon nanotubes for selective oxidation of glycerol in a base-free condition. Ind. Eng. Chem. Res. 2014, 53, 16309-15.
60. Ning, X.; Zhan, L.; Wang, H.; Yu, H.; Peng, F. Deactivation and regeneration of in situ formed bismuth-promoted platinum catalyst for the selective oxidation of glycerol to dihydroxyacetone. New. J. Chem. 2018, 42, 18837-43.
61. Worz, N.; Brandner, A.; Claus, P. Platinum-bismuth-catalyzed oxidation of glycerol: kinetics and the origin of selective deactivation. J. Phys. Chem. C. 2010, 114, 1164-72.
62. Zhang, X.; Zhou, D.; Wang, X.; et al. Overcoming the deactivation of Pt/CNT by introducing CeO2 for selective base-free glycerol-to-glyceric acid oxidation. ACS. Catal. 2020, 10, 3832-7.
63. Yang, C. L.; Wang, L. N.; Yin, P.; et al. Sulfur-anchoring synthesis of platinum intermetallic nanoparticle catalysts for fuel cells. Science 2021, 374, 459-64.