REFERENCES

1. Liu, S.; Zhang, X.; Yan, C.; et al. A small molecule fluorescent probe for mercury ion analysis in broad low pH range: spectral, optical mechanism and application studies. J. Hazard. Mater. 2022, 424, 127701.

2. Cui, T.; Yu, S.; Chen, Z.; et al. Rational design of fluorescent probe for Hg2+ by changing the chemical bond type. RSC. Adv. 2018, 8, 12276-81.

3. Jiang, X.; Wang, L.; Ran, X.; Tang, H.; Cao, D. Green, efficient detection and removal of Hg2+ by water-soluble fluorescent pillar[5]arene supramolecular self-assembly. Biosensors 2022, 12, 571.

4. Ding, Z.; Dou, X.; Wu, G.; Wang, C.; Xie, J. Nanoscale semiconducting polymer dots with rhodamine spirolactam as fluorescent sensor for mercury ions in living systems. Talanta 2023, 259, 124494.

5. Vil’pan, Y. A.; Grinshtein, I. L.; Akatov, A. A.; Gucer, S. Direct atomic absorption determination of mercury in drinking water and urine using a two-step electrothermal atomizer. J. Anal. Chem. 2005, 60, 38-44.

6. Moreton, J. A.; Delves, H. T. Simple direct method for the determination of total mercury levels in blood and urine and nitric acid digests of fish by inductively coupled plasma mass spectrometry. J. Anal. At. Spectrom. 1998, 13, 659-65.

7. Liu, S. J.; Nie, H. G.; Jiang, J. H.; Shen, G. L.; Yu, R. Q. Electrochemical sensor for mercury(II) based on conformational switch mediated by interstrand cooperative coordination. Anal. Chem. 2009, 81, 5724-30.

8. Zhang, Y.; Li, X.; Liu, G.; et al. Development of ELISA for detection of mercury based on specific monoclonal antibodies against mercury-chelate. Biol. Trace. Elem. Res. 2011, 144, 854-64.

9. Krishna MV, Castro J, Brewer TM, Marcus RK. Online mercury speciation through liquid chromatography with particle beam/electron ionization mass spectrometry detection. J. Anal. At. Spectrom. 2007, 22, 283-91.

10. Huang, Y.; Li, Y.; Li, Y.; Zhong, K.; Tang, L. An “AIE + ESIPT” mechanism-based benzothiazole-derived fluorescent probe for the detection of Hg2+ and its applications. New. J. Chem. 2023, 47, 6916-23.

11. Hong, Y.; Lam, J. W.; Tang, B. Z. Aggregation-induced emission: phenomenon, mechanism and applications. Chem. Commun. 2009, 4332-53.

12. Cheng, X.; Li, Q.; Qin, J.; Li, Z. A new approach to design ratiometric fluorescent probe for mercury(II) based on the Hg2+-promoted deprotection of thioacetals. ACS. Appl. Mater. Interfaces. 2010, 2, 1066-72.

13. Niu, C.; Liu, Q.; Shang, Z.; Zhao, L.; Ouyang, J. Dual-emission fluorescent sensor based on AIE organic nanoparticles and Au nanoclusters for the detection of mercury and melamine. Nanoscale 2015, 7, 8457-65.

14. Yang, J.; Yang, B.; Wen, G.; Liu, B. Dual sites fluorescence probe for H2S and Hg2+ with “AIE transformers” function. Sensor. Actuat. B. Chem. 2019, 296, 126670.

15. Wang, Y.; Mao, P.; Wu, W.; et al. New pyrrole-based single-molecule multianalyte sensor for Cu2+, Zn2+, and Hg2+ and its AIE activity. Sensor. Actuator. B. Chem. 2018, 255, 3085-92.

16. Li, S.; Wan, Y.; Li, Y.; Liu, J.; Pi, F.; Liu, L. A competitive “on-off-enhanced on” AIE fluorescence switch for detecting biothiols based on Hg2+ ions and gold nanoclusters. Biosensors 2022, 13, 35.

17. Liu, B.; Liu, J.; He, J.; Zhang, J.; Zhou, H.; Gao, C. A novel red-emitting fluorescent probe for the highly selective detection of Hg2+ ion with AIE mechanism. Chem. Phys. 2020, 539, 110944.

18. Zhang, Z.; Zhang, Y.; Kan, X.; et al. Tripodal aroyl hydrazone based AIE fluorescent sensor for relay detection Hg2+ and Br- in living cells. Dyes. Pigments. 2021, 191, 109389.

19. Wu, Y.; Wen, X.; Fan, Z. An AIE active pyrene based fluorescent probe for selective sensing Hg2+ and imaging in live cells. Spectrochim. Acta. A. Mol. Biomol. Spectrosc. 2019, 223, 117315.

20. Wang, K.; Li, J.; Ji, S.; et al. Fluorescence probes based on AIE luminogen: application for sensing Hg2+ in aqueous media and cellular imaging. New. J. Chem. 2018, 42, 13836-46.

21. He, L.; Li, Q.; Zhang, Y.; Huang, K.; Du, B.; Liang, L. A naphthalimide functionalized fluoran with AIE effect for ratiometric sensing Hg2+ and cell imaging application. Spectrochim. Acta. A. Mol. Biomol. Spectrosc. 2023, 296, 122672.

22. Nie, X.; Huang, W.; Zhou, D.; et al. Kinetic and thermodynamic control of tetraphenylethene aggregation-induced emission behaviors: nanoscience: Special Issue Dedicated to Professor Paul S. Weiss. Aggregate 2022, 3, e165.

23. Tong, F.; Zhou, Y.; Xu, Y.; et al. Supramolecular nanomedicines based on host-guest interactions of cyclodextrins. Exploration 2023, 3, 20210111.

24. Qi, Q.; Jiang, S.; Qiao, Q.; et al. Direct observation of intramolecular coplanarity regulated polymorph emission of a tetraphenylethene derivative. Chinese. Chem. Lett. 2020, 31, 2985-7.

25. Kim, D.; Thuy, H. T. T.; Kim, B.; et al. Synergistic enhancement of luminescent and ferroelectric properties through multi-clipping of tetraphenylethenes. Adv. Funct. Mater. 2023, 33, 2208157.

26. Docker, A.; Shang, X.; Yuan, D.; et al. Halogen bonding tetraphenylethene anion receptors: anion-induced emissive aggregates and photoswitchable recognition. Angew. Chem. Int. Ed. Engl. 2021, 60, 19442-50.

27. Zheng, J.; Ye, T.; Chen, J.; et al. Highly sensitive fluorescence detection of heparin based on aggregation-induced emission of a tetraphenylethene derivative. Biosens. Bioelectron. 2017, 90, 245-50.

28. Tian, W.; Lin, T.; Chen, H.; Wang, W. Configuration-controllable E/Z isomers based on tetraphenylethene: synthesis, characterization, and applications. ACS. Appl. Mater. Interfaces. 2019, 11, 6302-14.

29. Schultz, A.; Diele, S.; Laschat, S.; Nimtz, M. Novel columnar tetraphenylethenes via McMurry coupling. Adv. Funct. Mater. 2001, 11, 441-6.

30. Ma, X.; Chi, W.; Han, X.; et al. Aggregation-induced emission or aggregation-caused quenching? Chinese. Chem. Lett. 2021, 32, 1790-4.

31. Ma, X.; Hu, L.; Han, X.; Yin, J. Vinylpyridine- and vinylnitrobenzene-coating tetraphenylethenes: aggregation-induced emission (AIE) behavior and mechanochromic property. Chinese. Chem. Lett. 2018, 29, 1489-92.

32. Tang, L.; Yu, H.; Zhong, K.; Gao, X.; Li, J. An aggregation-induced emission-based fluorescence turn-on probe for Hg2+ and its application to detect Hg2+ in food samples. RSC. Adv. 2019, 9, 23316-23.

33. Li, H.; Lin, H.; Lv, W.; Gai, P.; Li, F. Equipment-free and visual detection of multiple biomarkers via an aggregation induced emission luminogen-based paper biosensor. Biosens. Bioelectron. 2020, 165, 112336.

34. Geng, Z.; Cao, Z.; Liu, J. Recent advances in targeted antibacterial therapy basing on nanomaterials. Exploration 2023, 3, 20210117.

35. Lv, W.; Yang, Q.; Li, Q.; Li, H.; Li, F. Quaternary ammonium salt-functionalized tetraphenylethene derivative boosts electrochemiluminescence for highly sensitive aqueous-phase biosensing. Anal. Chem. 2020, 92, 11747-54.

36. Huang, Y.; Zhan, C.; Yang, Y.; et al. Tuning proapoptotic activity of a phosphoric-acid-tethered tetraphenylethene by visible-light-triggered isomerization and switchable protein interactions for cancer therapy. Angew. Chem. Int. Ed. Engl. 2022, 61, e202208378.

37. Zhang, C. J.; Feng, G.; Xu, S.; et al. Structure-dependent cis/trans isomerization of tetraphenylethene derivatives: consequences for aggregation-induced emission. Angew. Chem. Int. Ed. Engl. 2016, 55, 6192-6.

38. Ma, L.; Li, C.; Yan, Q.; Wang, S.; Miao, W.; Cao, D. Unsymmetrical photochromic bithienylethene-bridge tetraphenylethene molecular switches: synthesis, aggregation-induced emission and information storage. Chinese. Chem. Lett. 2020, 31, 361-4.

39. Li, Y.; Yang, T.; Li, N.; et al. Multistimuli-responsive fluorescent organometallic assemblies based on mesoionic carbene-decorated tetraphenylethene ligands and their applications in cell imaging. CCS. Chem. 2022, 4, 732-43.

40. Xu, H.; Li, K.; Jiao, S.; Li, L.; Pan, S.; Yu, X. Tetraphenylethene based zinc complexes as fluorescent chemosensors for pyrophosphate sensing. Chinese. Chem. Lett. 2015, 26, 877-80.

41. Chen, S.; Wang, H.; Hong, Y.; Tang, B. Z. Fabrication of fluorescent nanoparticles based on AIE luminogens (AIE dots) and their applications in bioimaging. Mater. Horiz. 2016, 3, 283-93.

42. Hu, R.; Qin, A.; Tang, B. Z. AIE polymers: synthesis and applications. Prog. Polym. Sci. 2020, 100, 101176.

43. Liu, H.; Xiong, L.; Kwok, R. T. K.; He, X.; Lam, J. W. Y.; Tang, B. Z. AIE bioconjugates for biomedical applications. Adv. Opt. Mater. 2020, 8, 2000162.

44. Li, M.; Yin, B.; Gao, C.; et al. Graphene: preparation, tailoring, and modification. Exploration 2023, 3, 20210233.

45. Liu, W.; Yu, H.; Hu, R.; et al. Microlasers from AIE-active BODIPY derivative. Small 2020, 16, e1907074.

46. Pazos, E.; Vázquez, O.; Mascareñas, J. L.; Vázquez, M. E. Peptide-based fluorescent biosensors. Chem. Soc. Rev. 2009, 38, 3348-59.

47. Malachowski, L.; Stair, J. L.; Holcombe, J. A. Immobilized peptides/amino acids on solid supports for metal remediation. Pure. Appl. Chem. 2004, 76, 777-87.

48. Schiering, N.; Kabsch, W.; Moore, M. J.; Distefano, M. D.; Walsh, C. T.; Pai, E. F. Structure of the detoxification catalyst mercuric ion reductase from Bacillus sp. strain RC607. Nature 1991, 352, 168-72.

49. Li, Y.; Zhang, Y.; Wang, M.; et al. Highly selective fluorescence probe with peptide backbone for imaging mercury ions in living cells based on aggregation-induced emission effect. J. Hazard. Mater. 2021, 415, 125712.

50. Selvaraj, M.; Rajalakshmi, K.; Ahn, D. H.; et al. Tetraphenylethene-based fluorescent probe with aggregation-induced emission behavior for Hg2+ detection and its application. Anal. Chim. Acta. 2021, 1148, 238178.

51. Lei, S.; Tian, J.; Kang, Y.; Zhang, Y.; Manners, I. AIE-active, stimuli-responsive fluorescent 2D block copolymer nanoplatelets based on corona chain compression. J. Am. Chem. Soc. 2022, 144, 17630-41.

52. Neupane, L. N.; Hwang, G. W.; Lee, K. H. Tuning of the selectivity of fluorescent peptidyl bioprobe using aggregation induced emission for heavy metal ions by buffering agents in 100% aqueous solutions. Biosens. Bioelectron. 2017, 92, 179-85.

53. Cheng, X.; Huang, S.; Lei, Q.; et al. The exquisite integration of ESIPT, PET and AIE for constructing fluorescent probe for Hg(II) detection and poisoning. Chinese. Chem. Lett. 2022, 33, 1861-4.

54. Qin, B.; Zhang, S.; Song, Q.; Huang, Z.; Xu, J. F.; Zhang, X. Supramolecular interfacial polymerization: a controllable method of fabricating supramolecular polymeric materials. Angew. Chem. Int. Ed. Engl. 2017, 56, 7639-43.

55. Chen, J.; Wang, Y.; Yu, Y.; et al. Composite materials based on covalent organic frameworks for multiple advanced applications. Exploration 2023, 3, 20220144.

56. Kwon, T. W.; Choi, J. W.; Coskun, A. The emerging era of supramolecular polymeric binders in silicon anodes. Chem. Soc. Rev. 2018, 47, 2145-64.

57. Makam, P.; Gazit, E. Minimalistic peptide supramolecular co-assembly: expanding the conformational space for nanotechnology. Chem. Soc. Rev. 2018, 47, 3406-20.

58. Liu, K.; Jiang, Y.; Bao, Z.; Yan, X. Skin-inspired electronics enabled by supramolecular polymeric materials. CCS. Chem. 2019, 1, 431-47.

59. Tian, W.; Li, X.; Wang, J. Supramolecular hyperbranched polymers. Chem. Commun. 2017, 53, 2531-42.

60. Hua, B.; Shao, L.; Li, M.; Liang, H.; Huang, F. Macrocycle-based solid-state supramolecular polymers. Acc. Chem. Res. 2022, 55, 1025-34.

61. Ishiwata, T.; Furukawa, Y.; Sugikawa, K.; Kokado, K.; Sada, K. Transformation of metal-organic framework to polymer gel by cross-linking the organic ligands preorganized in metal-organic framework. J. Am. Chem. Soc. 2013, 135, 5427-32.

62. Deng, X.; Njoroge, I.; Jennings, G. K. Surface-initiated polymer/ionic liquid gel films. J. Phys. Chem. C. 2018, 122, 6033-40.

63. Hua, Y.; Liu, M.; Li, S.; et al. An electroanalysis strategy for glutathione in cells based on the displacement reaction route using melamine-copper nanocomposites synthesized by the controlled supermolecular self-assembly. Biosens. Bioelectron. 2019, 124-125, 89-95.

64. Hu, Y.; Shen, P.; Zeng, N.; et al. Hybrid hydrogel electrolyte based on metal-organic supermolecular self-assembly and polymer chemical cross-linking for rechargeable aqueous Zn-MnO2 batteries. ACS. Appl. Mater. Interfaces. 2020, 12, 42285-93.

65. Alkordi, M. H.; Brant, J. A.; Wojtas, L.; Kravtsov, V. C.; Cairns, A. J.; Eddaoudi, M. Zeolite-like metal-organic frameworks (ZMOFs) based on the directed assembly of finite metal-organic cubes (MOCs). J. Am. Chem. Soc. 2009, 131, 17753-5.

66. Pan, T.; Wang, Y.; Xue, X.; Zhang, C. Rational design of allosteric switchable catalysts. Exploration 2022, 2, 20210095.

67. Zheng, B.; Wang, F.; Dong, S.; Huang, F. Supramolecular polymers constructed by crown ether-based molecular recognition. Chem. Soc. Rev. 2012, 41, 1621-36.

68. Saha, S.; Roy, A.; Roy, M. N. Mechanistic investigation of inclusion complexes of a sulfa drug with α- and β-cyclodextrins. Ind. Eng. Chem. Res. 2017, 56, 11672-83.

69. Hu, Q. D.; Tang, G. P.; Chu, P. K. Cyclodextrin-based host-guest supramolecular nanoparticles for delivery: from design to applications. Acc. Chem. Res. 2014, 47, 2017-25.

70. Nimse, S. B.; Kim, T. Biological applications of functionalized calixarenes. Chem. Soc. Rev. 2013, 42, 366-86.

71. Webber, M. J.; Langer, R. Drug delivery by supramolecular design. Chem. Soc. Rev. 2017, 46, 6600-20.

72. Jiang, X.; Huang, X.; Song, S.; et al. Tri-pillar[5]arene-based multi-stimuli-responsive supramolecular polymers for fluorescence detection and separation of Hg2+. Polym. Chem. 2018, 9, 4625-30.

73. Cheng, H. B.; Li, Z.; Huang, Y. D.; Liu, L.; Wu, H. C. Pillararene-based aggregation-induced-emission-active supramolecular system for simultaneous detection and removal of mercury(II) in water. ACS. Appl. Mater. Interfaces. 2017, 9, 11889-94.

74. Dai, D.; Li, Z.; Yang, J.; et al. Supramolecular assembly-induced emission enhancement for efficient mercury(II) detection and removal. J. Am. Chem. Soc. 2019, 141, 4756-63.

75. Liu, L.; Sun, B.; Mao, Y.; Ding, R. Electron transfer and intersystem crossing triggered fluorescence quenching detection of mercury ions. Phys. Chem. Chem. Phys. 2019, 21, 16676-85.

76. Suresh, M.; Shrivastav, A.; Mishra, S.; Suresh, E.; Das, A. A rhodamine-based chemosensor that works in the biological system. Org. Lett. 2008, 10, 3013-6.

77. Mei, Q.; Tian, R.; Shi, Y.; Hua, Q.; Chen, C.; Tong, B. A series of selective and sensitive fluorescent sensors based on a thiophen-2-yl-benzothiazole unit for Hg2+. New. J. Chem. 2016, 40, 2333-42.

78. Wang, H.; Zhang, P.; Chen, J.; et al. Polymer nanoparticle-based ratiometric fluorescent probe for imaging Hg2+ ions in living cells. Sensor. Actuat. B. Chem. 2017, 242, 818-24.

79. Singh, A.; Raj, T.; Aree, T.; Singh, N. Fluorescent organic nanoparticles of Biginelli-based molecules: recognition of Hg2+ and Cl- in an aqueous medium. Inorg. Chem. 2013, 52, 13830-2.

80. Philippot, C.; Dubois, F.; Maurin, M.; Boury, B.; Prat, A.; Ibanez, A. New core–shell hybrid nanoparticles for biophotonics: fluorescent organic nanocrystals confined in organosilicate spheres. J. Mater. Chem. 2012, 22, 11370.

81. Su, J.; Fukaminato, T.; Placial, J. P.; et al. Giant amplification of photoswitching by a few photons in fluorescent photochromic organic nanoparticles. Angew. Chem. Int. Ed. Engl. 2016, 55, 3662-6.

82. Collot, M.; Schild, J.; Fam, K. T.; Bouchaala, R.; Klymchenko, A. S. Stealth and bright monomolecular fluorescent organic nanoparticles based on folded amphiphilic polymer. ACS. Nano. 2020, 14, 13924-37.

83. Liu, L.; Tao, H.; Chen, G.; Chen, Y.; Cao, Q. An amphiphilic pyrene-based probe for multiple channel sensing of mercury ions. J. Lumin. 2018, 203, 189-94.

84. Bhardwaj, V. K.; Sharma, H.; Kaur, N.; Singh, N. Fluorescent organic nanoparticles (FONs) of rhodamine-appended dipodal derivative: highly sensitive fluorescent sensor for the detection of Hg2+ in aqueous media. New. J. Chem. 2013, 37, 4192.

85. Wang, T.; Liu, M.; Xu, D.; et al. Facile fabrication of cross-linked fluorescent organic nanoparticles with aggregation-induced emission characteristic via the thiol-ene click reaction and their potential for biological imaging. Mater. Sci. Eng. C. Mater. Biol. Appl. 2019, 98, 293-9.

86. Dichiarante, V.; Pigliacelli, C.; Metrangolo, P.; Baldelli, B. F. Confined space design by nanoparticle self-assembly. Chem. Sci. 2020, 12, 1632-46.

87. Rao, A.; Roy, S.; Jain, V.; Pillai, P. P. Nanoparticle self-assembly: from design principles to complex matter to functional materials. ACS. Appl. Mater. Interfaces. 2023, 15, 25248-74.

88. Guo, G.; Ji, L.; Shen, X.; et al. Self-assembly of transition-metal-oxide nanoparticle supraparticles with designed architectures and their enhanced lithium storage properties. J. Mater. Chem. A. 2016, 4, 16128-35.

89. Fery-Forgues, S. Fluorescent organic nanocrystals and non-doped nanoparticles for biological applications. Nanoscale 2013, 5, 8428-42.

90. Mir, N.; Heidari, A.; Beyzaei, H.; Mirkazehi-Rigi, S.; Karimi, P. Detection of Hg2+ in aqueous solution by pyrazole derivative-functionalized Fe3O4@SiO2 fluorescent probe. Chem. Eng. J. 2017, 327, 648-55.

91. Dubuisson, E.; Monnier, V.; Sanz-Menez, N.; et al. Brilliant molecular nanocrystals emerging from sol-gel thin films: towards a new generation of fluorescent biochips. Nanotechnology 2009, 20, 315301.

92. Zheng, K.; Boccaccini, A. R. Sol-gel processing of bioactive glass nanoparticles: a review. Adv. Colloid. Interface. Sci. 2017, 249, 363-73.

93. Kerner, R. A.; Zhao, L.; Xiao, Z.; Rand, B. P. Ultrasmooth metal halide perovskite thin films via sol–gel processing. J. Mater. Chem. A. 2016, 4, 8308-15.

94. Marwani, H. M.; Bakhsh, E. M. Selective adsorption of 4-chlorophenol based on silica-ionic liquid composite developed by sol–gel process. Chem. Eng. J. 2017, 326, 794-802.

95. Chi, F.; Zeng, Y.; Liu, C.; et al. Aggregation of silica nanoparticles in sol-gel processes to create optical coatings with controllable ultralow refractive indices. ACS. Appl. Mater. Interfaces. 2020, 12, 16887-95.

96. Wang, Y.; Cui, X.; Gao, H.; Lu, R.; Zhou, W. A fluorescent organic nanoparticles-based sensor synthesized through hydrothermal process and its application in sensing Hg2+ of real samples and fast visual detection. Spectrochim. Acta. A. Mol. Biomol. Spectrosc. 2022, 270, 120833.

97. Hu, J.; Li, J.; Qi, J.; Chen, J. Highly selective and effective mercury(II) fluorescent sensors. New. J. Chem. 2015, 39, 843-8.

98. Wang, X.; Hu, C.; Wang, X.; et al. Facile synthesis of dual-ligand terbium-organic gels as ratiometric fluorescence probes for efficient mercury detection. J. Hazard. Mater. 2022, 436, 129080.

99. Liu, Y.; Lin, F. X.; Feng, Y.; et al. Shape-persistent π-conjugated macrocycles with aggregation-induced emission property: synthesis, mechanofluorochromism, and mercury(II) detection. ACS. Appl. Mater. Interfaces. 2019, 11, 34232-40.

100. Li, Z.; Yang, Y. W. Macrocycle-based porous organic polymers for separation, sensing, and catalysis. Adv. Mater. 2022, 34, e2107401.

101. Dai, D.; Yang, J.; Yang, Y. W. Supramolecular assemblies with aggregation-induced emission properties for sensing and detection. Chemistry 2022, 28, e202103185.

102. Wang, Y.; Lei, Y.; Wang, J.; Yang, H.; Sun, L. Tetrapeptide self-assembled multicolor fluorescent nanoparticles for bioimaging applications. Chinese. Chem. Lett. 2023, 34, 107915.

103. Xiong, R.; Yu, S.; Smith, M. J.; et al. Self-assembly of emissive nanocellulose/quantum dot nanostructures for chiral fluorescent materials. ACS. Nano. 2019, 13, 9074-81.

104. Su, P.; Liang, L.; Wang, T.; et al. AIE-based Tb3+ complex self-assembled nanoprobe for ratiometric fluorescence detection of anthrax spore biomarker in water solution and actual spore samples. Chem. Eng. J. 2021, 413, 127408.

105. Li, M.; Yang, M.; Liu, B.; et al. Self-assembling fluorescent hydrogel for highly efficient water purification and photothermal conversion. Chem. Eng. J. 2022, 431, 134245.

106. Lou, X. Y.; Zhang, G.; Song, N.; Yang, Y. W. Supramolecular materials based on AIEgens for photo-assisted therapy. Biomaterials 2022, 286, 121595.

107. An, S.; Xu, Q.; Ni, Z.; et al. Construction of covalent organic frameworks with crown ether struts. Angew. Chem. Int. Ed. Engl. 2021, 60, 9959-63.

108. Yu, Y.; Li, G.; Liu, J.; Yuan, D. A recyclable fluorescent covalent organic framework for exclusive detection and removal of mercury(II). Chem. Eng. J. 2020, 401, 126139.

109. Li, M.; Zhang, S.; Zhang, P.; et al. Dansyl-labelled cellulose as dual-functional adsorbents for elimination and detection of mercury in aqueous solution via aggregation-induced emission. J. Environ. Manage. 2023, 338, 117773.

110. Song, Y.; Xie, R.; Tian, M.; Mao, B.; Chai, F. Controllable synthesis of bifunctional magnetic carbon dots for rapid fluorescent detection and reversible removal of Hg2. J. Hazard. Mater. 2023, 457, 131683.

111. Zong, H.; Wang, X.; Mu, X.; Wang, J.; Sun, M. Plasmon-enhanced fluorescence resonance energy transfer. Chem. Rec. 2019, 19, 818-42.

112. Hong, S.; Samson, A. A. S.; Song, J. M. Application of fluorescence resonance energy transfer to bioprinting. TrAC. Trend. Anal. Chem. 2020, 122, 115749.

113. Zhang, W.; Liu, X.; Li, P.; Zhang, W.; Wang, H.; Tang, B. Cellular fluorescence imaging based on resonance energy transfer. TrAC. Trend. Anal. Chem. 2020, 123, 115742.

114. Li, C.; Li, Y.; Zhang, Y.; Zhang, C. Single-molecule fluorescence resonance energy transfer and its biomedical applications. TrAC. Trend. Anal. Chem. 2020, 122, 115753.

115. Hou, S.; Chen, Y.; Lu, D.; Xiong, Q.; Lim, Y.; Duan, H. A self-assembled plasmonic substrate for enhanced fluorescence resonance energy transfer. Adv. Mater. 2020, 32, e1906475.

116. Singuru MM, Sun S, Chuang M. Advances in oligonucleotide-based detection coupled with fluorescence resonance energy transfer. TrAC. Trend. Anal. Chem. 2020, 123, 115756.

117. Muramatsu, T.; Shimizu, S.; Clough, J. M.; Weder, C.; Sagara, Y. Force-induced shuttling of rotaxanes controls fluorescence resonance energy transfer in polymer hydrogels. ACS. Appl. Mater. Interfaces. 2023, 15, 8502-9.

118. Su, B.; Zhang, Z.; Sun, Z.; et al. Fluonanobody-based nanosensor via fluorescence resonance energy transfer for ultrasensitive detection of ochratoxin A. J. Hazard. Mater. 2022, 422, 126838.

119. Lin, Y.; Chen, J.; Hsiao, P.; Tung, Y.; Chang, C.; Chen, C. Efficiency improvement of dye-sensitized solar cells by in situ fluorescence resonance energy transfer. J. Mater. Chem. A. 2017, 5, 9081-9.

120. Wu, X.; Song, Y.; Yan, X.; et al. Carbon quantum dots as fluorescence resonance energy transfer sensors for organophosphate pesticides determination. Biosens. Bioelectron. 2017, 94, 292-7.

121. Neema, P.; Tomy, A. M.; Cyriac, J. Chemical sensor platforms based on fluorescence resonance energy transfer (FRET) and 2D materials. TrAC. Trend. Anal. Chem. 2020, 124, 115797.

122. Steinmetzger, C.; Bäuerlein, C.; Höbartner, C. Supramolecular fluorescence resonance energy transfer in nucleobase-modified fluorogenic RNA aptamers. Angew. Chem. Int. Ed. Engl. 2020, 59, 6760-4.

123. Gui, B.; Liu, X.; Yu, G.; et al. Tuning of Förster resonance energy transfer in metal–organic frameworks: toward amplified fluorescence sensing. CCS. Chem. 2021, 3, 2054-62.

124. Asadi-zaki, N.; Mardani, H.; Roghani-mamaqani, H.; Wang, F. Stimuli-induced adjustment of spatial distribution of fluorescence resonance energy transfer dyads in smart polymers. Coord. Chem. Rev. 2024, 500, 215518.

125. Zhang, Z.; Zhao, Z.; Wu, L.; et al. Emissive platinum(II) cages with reverse fluorescence resonance energy transfer for multiple sensing. J. Am. Chem. Soc. 2020, 142, 2592-600.

126. Zeng, L.; Su, Z.; Li, X.; Shi, S. Construction of triblock copolymer-gold nanorod composites for fluorescence resonance energy transfer via pH-sensitive allosteric. Chinese. Chem. Lett. 2020, 31, 3131-4.

127. Chen, L.; Tse, W. H.; Chen, Y.; McDonald, M. W.; Melling, J.; Zhang, J. Nanostructured biosensor for detecting glucose in tear by applying fluorescence resonance energy transfer quenching mechanism. Biosens. Bioelectron. 2017, 91, 393-9.

128. Qu, S.; Sun, F.; Qiao, Z.; Li, J.; Shang, L. In situ investigation on the protein corona formation of quantum dots by using fluorescence resonance energy transfer. Small 2020, 16, e1907633.

129. Wu, Y.; Yan, C.; Li, X. S.; et al. Circularly polarized fluorescence resonance energy transfer (C-FRET) for efficient chirality transmission within an intermolecular system. Angew. Chem. Int. Ed. Engl. 2021, 60, 24549-57.

130. Guo, J.; An, D.; Hu, Y.; et al. Development of a new combination of spectroscopic analysis and mathematical model for the enhanced sludge dewaterability: application to tannic acid effect. Chem. Eng. J. 2024, 482, 148833.

131. Zhu, J.; Qu, X.; Zhuang, Y.; Miao, P. Entropy-driven strand displacements around DNA tetrahedron for sensitive detection and intracellular imaging of mRNA. Small. Struct. 2024, 5, 2300420.

132. Liu, Y.; Tran, K.; Ho, K.; et al. Stratification of polyisocyanate in two-component waterborne polyurethane films. Chem. Eng. J. 2024, 483, 148981.

133. Yan, Z.; Kavanagh, T.; da, S. H. R.; et al. FRET sensor-modified synthetic hydrogels for real-time monitoring of cell-derived matrix metalloproteinase activity using fluorescence lifetime imaging. Adv. Funct. Mater. 2024, 34, adfm.202309711.

134. Grabenhorst, L.; Sturzenegger, F.; Hasler, M.; Schuler, B.; Tinnefeld, P. Single-molecule FRET at 10 MHz count rates. J. Am. Chem. Soc. 2024, 146, 3539-44.

135. Ahn, S.; Suh, J. S.; Jang, Y. K.; et al. TAUCON and TAUCOM: a novel biosensor based on fluorescence resonance energy transfer for detecting tau hyperphosphorylation-associated cellular pathologies. Biosens. Bioelectron. 2023, 237, 115533.

136. Lee, M. H.; Lin, C. C.; Thomas, J. L.; et al. Upconversion nanoparticle-based fluorescence resonance energy transfer sensing of programmed death ligand 1 using sandwich epitope-imprinted polymers. Biosens. Bioelectron. 2024, 246, 115889.

137. Garci, A.; Abid, S.; David, A. H. G.; et al. Exciplex emission and Förster resonance energy transfer in polycyclic aromatic hydrocarbon-based bischromophoric cyclophanes and homo[2]catenanes. J. Am. Chem. Soc. 2023, 145, 18391-401.

138. Wang, C.; Dong, W.; Li, A.; Atinafu, D. G.; Wang, G.; Lu, Y. The reinforced photothermal effect of conjugated dye/graphene oxide-based phase change materials: fluorescence resonance energy transfer and applications in solar-thermal energy storage. Chem. Eng. J. 2022, 428, 130605.

139. Liu, Y.; Lv, X.; Zhao, Y.; et al. A naphthalimide–rhodamine ratiometric fluorescent probe for Hg2+ based on fluorescence resonance energy transfer. Dyes. Pigm. 2012, 92, 909-15.

140. Fang, Y.; Zhou, Y.; Li, J.; Rui, Q.; Yao, C. Naphthalimide–Rhodamine based chemosensors for colorimetric and fluorescent sensing Hg2+ through different signaling mechanisms in corresponding solvent systems. Sensor. Actuat. B. Chem. 2015, 215, 350-9.

141. Cheng, H.; Qian, Y. Intramolecular fluorescence resonance energy transfer in a novel PDI–BODIPY dendritic structure: Synthesis, Hg2+ sensor and living cell imaging. Sensor. Actuat. B. Chem. 2015, 219, 57-64.

142. Tonsomboon, K.; Noppakuadrittidej, P.; Sutikulsombat, S.; et al. Turn-on fluorescence resonance energy transfer (FRET)-based electrospun fibrous membranes: Rapid and ultrasensitive test strips for on-site detection of Mercury (II) ion. Sensor. Actuat. B. Chem. 2021, 344, 130212.

143. Kumari, C.; Sain, D.; Kumar, A.; et al. A bis-hydrazone derivative of 2,5-furandicarboxaldehyde with perfect hetero-atomic cavity for selective sensing of Hg(II) and its intracellular detection in living HeLa S3 cell. Sensor. Actuat. B. Chem. 2017, 243, 1181-90.

144. Qu, J.; Zhang, X.; Zhou, W.; Yao, R.; Zhang, X.; Jing, S. Carbon dots/Ruthenium(III) nanocomposites for FRET fluorescence detection and removal of mercury (II) via assembling into nanofibers. Talanta 2024, 268, 125322.

145. Lu, Z.; Dang, Y.; Dai, C.; et al. Hollow MnFeO oxide derived from MOF@MOF with multiple enzyme-like activities for multifunction colorimetric assay of biomolecules and Hg2. J. Hazard. Mater. 2021, 403, 123979.

Chemical Synthesis
ISSN 2769-5247 (Online)

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/