REFERENCES

1. Crespo-Quesada M, Cárdenas-Lizana F, Dessimoz A, Kiwi-Minsker L. Modern trends in catalyst and process design for alkyne hydrogenations. ACS Catal 2012;2:1773-86.

2. Tang J, Liu P, Liu X, et al. In situ encapsulation of Pt nanoparticles within pure silica TON zeolites for space-confined selective hydrogenation. ACS Appl Mater Interfaces 2020;12:11522-32.

3. Zhao L, Qin X, Zhang X, et al. A magnetically separable Pd single-atom catalyst for efficient selective hydrogenation of phenylacetylene. Adv Mater 2022;34:e2110455.

4. Deng D, Yang Y, Gong Y, Li Y, Xu X, Wang Y. Palladium nanoparticles supported on mpg-C3N4 as active catalyst for semihydrogenation of phenylacetylene under mild conditions. Green Chem 2013;15:2525-31.

5. Shao L, Huang X, Teschner D, Zhang W. Gold supported on graphene oxide: an active and selective catalyst for phenylacetylene hydrogenations at low temperatures. ACS Catal 2014;4:2369-73.

6. Liu Y, Guo W, Li X, Jiang P, Zhang N, Liang M. Copper single-atom-covered Pt nanoparticles for selective hydrogenation of phenylacetylene. ACS Appl Nano Mater 2021;4:5292-300.

7. Liu K, Qin R, Zheng N. Insights into the interfacial effects in heterogeneous metal nanocatalysts toward selective hydrogenation. J Am Chem Soc 2021;143:4483-99.

8. Zhang L, Zhou M, Wang A, Zhang T. Selective hydrogenation over supported metal catalysts: from nanoparticles to single atoms. Chem Rev 2020;120:683-733.

9. Teschner D, Borsodi J, Wootsch A, et al. The roles of subsurface carbon and hydrogen in palladium-catalyzed alkyne hydrogenation. Science 2008;320:86-9.

10. Choe K, Zheng F, Wang H, et al. Fast and selective semihydrogenation of alkynes by palladium nanoparticles sandwiched in metal-organic frameworks. Angew Chem Int Ed Engl 2020;59:3650-7.

11. Pei GX, Liu XY, Wang A, et al. Ag alloyed Pd single-atom catalysts for efficient selective hydrogenation of acetylene to ethylene in excess ethylene. ACS Catal 2015;5:3717-25.

12. Osswald J, Giedigkeit R, Jentoft R, et al. Palladium–gallium intermetallic compounds for the selective hydrogenation of acetylene: Part I: preparation and structural investigation under reaction conditions. J Catal 2008;258:210-8.

13. Luo Y, Alarcón Villaseca S, Friedrich M, Teschner D, Knop-Gericke A, Armbrüster M. Addressing electronic effects in the semi-hydrogenation of ethyne by InPd2 and intermetallic Ga–Pd compounds. J Catal 2016;338:265-72.

14. Chen X, Peng M, Cai X, et al. Regulating coordination number in atomically dispersed Pt species on defect-rich graphene for n-butane dehydrogenation reaction. Nat Commun 2021;12:2664.

15. Schoenbaum CA, Schwartz DK, Medlin JW. ChemInform abstract: controlling the surface environment of heterogeneous catalysts using self-assembled monolayers. ChemInform 2014;45:chin.201425241.

16. Shen C, Ji Y, Wang P, et al. Interface confinement in metal nanosheet for high-efficiency semi-hydrogenation of alkynes. ACS Catal 2021;11:5231-9.

17. Miyazaki M, Furukawa S, Takayama T, Yamazoe S, Komatsu T. Surface modification of PdZn nanoparticles via galvanic replacement for the selective hydrogenation of terminal alkynes. ACS Appl Nano Mater 2019;2:3307-14.

18. Kaiser SK, Chen Z, Faust Akl D, Mitchell S, Pérez-Ramírez J. Single-atom catalysts across the periodic table. Chem Rev 2020;120:11703-809.

19. Gan T, Wang D. Atomically dispersed materials: ideal catalysts in atomic era. Nano Res 2024;17:18-38.

20. Zhu P, Feng W, Zhao D, et al. p-Block bismuth nanoclusters sites activated by atomically dispersed bismuth for tandem boosting electrocatalytic hydrogen peroxide production. Angew Chem Int Ed Engl 2023;62:e202304488.

21. Zhao D, Chen Z, Yang W, et al. MXene (Ti3C2) vacancy-confined single-atom catalyst for efficient functionalization of CO2. J Am Chem Soc 2019;141:4086-93.

22. Wang A, Li J, Zhang T. Heterogeneous single-atom catalysis. Nat Rev Chem 2018;2:65-81.

23. Deng D, Chen X, Yu L, et al. A single iron site confined in a graphene matrix for the catalytic oxidation of benzene at room temperature. Sci Adv 2015;1:e1500462.

24. Huang F, Deng Y, Chen Y, et al. Atomically dispersed Pd on nanodiamond/graphene hybrid for selective hydrogenation of acetylene. J Am Chem Soc 2018;140:13142-6.

25. Hannagan RT, Giannakakis G, Flytzani-Stephanopoulos M, Sykes ECH. Single-atom alloy catalysis. Chem Rev 2020;120:12044-88.

26. Huang F, Deng Y, Chen Y, et al. Anchoring Cu1 species over nanodiamond-graphene for semi-hydrogenation of acetylene. Nat Commun 2019;10:4431.

27. Liu Y, Wang B, Fu Q, et al. Polyoxometalate-based metal-organic framework as molecular sieve for highly selective semi-hydrogenation of acetylene on isolated single Pd atom sites. Angew Chem Int Ed Engl 2021;60:22522-8.

28. Guo Y, Huang Y, Zeng B, et al. Photo-thermo semi-hydrogenation of acetylene on Pd1/TiO2 single-atom catalyst. Nat Commun 2022;13:2648.

29. Fu B, Mccue AJ, Liu Y, et al. Highly selective and stable isolated non-noble metal atom catalysts for selective hydrogenation of acetylene. ACS Catal 2022;12:607-15.

30. Yang F, Ding S, Song H, Yan N. Single-atom Pd dispersed on nanoscale anatase TiO2 for the selective hydrogenation of phenylacetylene. Sci China Mater 2020;63:982-92.

31. Zhang W, Chao Y, Zhang W, et al. Emerging dual-atomic-site catalysts for efficient energy catalysis. Adv Mater 2021;33:e2102576.

32. Wang D, Li Y. Bimetallic nanocrystals: liquid-phase synthesis and catalytic applications. Adv Mater 2011;23:1044-60.

33. Sankar M, Dimitratos N, Miedziak PJ, Wells PP, Kiely CJ, Hutchings GJ. Designing bimetallic catalysts for a green and sustainable future. Chem Soc Rev 2012;41:8099-139.

34. Zhang L, Xie Z, Gong J. Shape-controlled synthesis of Au-Pd bimetallic nanocrystals for catalytic applications. Chem Soc Rev 2016;45:3916-34.

35. Zhu X, Guo Q, Sun Y, et al. Optimising surface d charge of AuPd nanoalloy catalysts for enhanced catalytic activity. Nat Commun 2019;10:1428.

36. Li H, Shin K, Henkelman G. Effects of ensembles, ligand, and strain on adsorbate binding to alloy surfaces. J Chem Phys 2018;149:174705.

37. Yang X, Tat T, Libanori A, et al. Single-atom catalysts with bimetallic centers for high-performance electrochemical CO2 reduction. Mater Today 2021;45:54-61.

38. Li Z, Hu M, Liu J, et al. Mesoporous silica stabilized MOF nanoreactor for highly selective semi-hydrogenation of phenylacetylene via synergistic effect of Pd and Ru single site. Nano Res 2022;15:1983-92.

39. Zeng Z, Xu Y, Zhang Z, et al. Rare-earth-containing perovskite nanomaterials: design, synthesis, properties and applications. Chem Soc Rev 2020;49:1109-43.

40. Xu J, Chen X, Xu Y, Du Y, Yan C. Ultrathin 2D rare-earth nanomaterials: compositions, syntheses, and applications. Adv Mater 2020;32:e1806461.

41. Kim C, Dionigi F, Beermann V, Wang X, Möller T, Strasser P. Alloy nanocatalysts for the electrochemical oxygen reduction (ORR) and the direct electrochemical carbon dioxide reduction reaction (CO2 RR). Adv Mater 2019;31:e1805617.

42. Jong Yoo S, Kim SK, Jeon TY, et al. Enhanced stability and activity of Pt-Y alloy catalysts for electrocatalytic oxygen reduction. Chem Commun 2011;47:11414-6.

43. Yoo SJ, Hwang SJ, Lee J, et al. Promoting effects of La for improved oxygen reduction activity and high stability of Pt on Pt–La alloy electrodes. Energy Environ Sci 2012;5:7521-5.

44. Escudero-Escribano M, Verdaguer-Casadevall A, Malacrida P, et al. Pt5Gd as a highly active and stable catalyst for oxygen electroreduction. J Am Chem Soc 2012;134:16476-9.

45. Kanady JS, Leidinger P, Haas A, et al. Synthesis of Pt3Y and other early-late intermetallic nanoparticles by way of a molten reducing agent. J Am Chem Soc 2017;139:5672-5.

46. Velázquez-Palenzuela A, Masini F, Pedersen AF, et al. The enhanced activity of mass-selected PtxGd nanoparticles for oxygen electroreduction. J Cataly 2015;328:297-307.

47. Brandiele R, Durante C, Grądzka E, et al. One step forward to a scalable synthesis of platinum–yttrium alloy nanoparticles on mesoporous carbon for the oxygen reduction reaction. J Mater Chem A 2016;4:12232-40.

48. Cui P, Wu C, Du J, Luo G, Huang Z, Zhou S. Three-coordinate Pd(0) with rare-earth metalloligands: synergetic CO activation and double P-C bond cleavage-formation reactions. Inorg Chem 2021;60:9688-99.

49. Lee HG, Milner PJ, Buchwald SL. An improved catalyst system for the Pd-catalyzed fluorination of (hetero)aryl triflates. Org Lett 2013;15:5602-5.

50. Liu J, Kong X, Zheng L, Guo X, Liu X, Shui J. Rare earth single-atom catalysts for nitrogen and carbon dioxide reduction. ACS Nano 2020;14:1093-101.

51. Zhang E, Hu X, Meng L, et al. Single-atom yttrium engineering janus electrode for rechargeable Na-S batteries. J Am Chem Soc 2022;144:18995-9007.

52. Tan W, Xie S, Le D, et al. Fine-tuned local coordination environment of Pt single atoms on ceria controls catalytic reactivity. Nat Commun 2022;13:7070.

53. Muravev V, Spezzati G, Su Y, et al. Interface dynamics of Pd–CeO2 single-atom catalysts during CO oxidation. Nat Catal 2021;4:469-78.

54. Ye TN, Lu Y, Xiao Z, et al. Palladium-bearing intermetallic electride as an efficient and stable catalyst for Suzuki cross-coupling reactions. Nat Commun 2019;10:5653.

55. Hamm G, Schmidt T, Breitbach J, Franke D, Becker C, Wandelt K. The adsorption of ethene on Pd(111) and ordered Sn/Pd(111) surface alloys. Zeitschrift für Physikalische Chemie 2009;223:209-32.

56. Lear T, Marshall R, Lopez-Sanchez JA, et al. The application of infrared spectroscopy to probe the surface morphology of alumina-supported palladium catalysts. J Chem Phys 2005;123:174706.

57. Zhou K, Li Y. Catalysis based on nanocrystals with well-defined facets. Angew Chem Int Ed Engl 2012;51:602-13.

58. Hori Y, Takahashi I, Koga O, Hoshi N. Selective formation of C2 compounds from electrochemical reduction of CO2 at a series of copper single crystal electrodes. J Phys Chem B 2002;106:15-7.

59. Brodersen SH, Grønbjerg U, Hvolbæk B, Schiøtz J. Understanding the catalytic activity of gold nanoparticles through multi-scale simulations. J Catal 2011;284:34-41.

60. Li M, Shen J. Microcalorimetric studies of O2 and C2H4 adsorption on Pd/SiO2 catalysts modified by Cu and Ag. Thermochim Acta 2001;379:45-50.

61. Huang F, Peng M, Chen Y, et al. Low-temperature acetylene semi-hydrogenation over the Pd1-Cu1 dual-atom catalyst. J Am Chem Soc 2022;144:18485-93.

62. Gao J, Zhao H, Yang X, Koel BE, Podkolzin SG. Controlling acetylene adsorption and reactions on Pt–Sn catalytic surfaces. ACS Catal 2013;3:1149-53.

63. Gao J, Zhao H, Yang X, Koel BE, Podkolzin SG. Geometric requirements for hydrocarbon catalytic sites on platinum surfaces. Angew Chem Int Ed Engl 2014;53:3641-4.

64. Sanville E, Kenny SD, Smith R, Henkelman G. Improved grid-based algorithm for Bader charge allocation. J Comput Chem 2007;28:899-908.

65. Huang DC, Chang KH, Pong WF, Tseng PK, Hung KJ, Huang WF. Effect of Ag-promotion on Pd catalysts by XANES. Catal Lett 1998;53:155-9.

66. Lamb RN, Ngamsom B, Trimm DL, Gong B, Silevston PL, Praserthdam P. Surface characterisation of Pd-Ag/Al2O3 catalysts for acetylene hydrogenation using an improved XPS procedure. Appl Catal A Gen 2004;268:43-50.

67. Pei GX, Liu XY, Yang X, et al. Performance of Cu-alloyed Pd single-atom catalyst for semihydrogenation of acetylene under simulated front-end conditions. ACS Catal 2017;7:1491-500.

68. Qiao B, Wang A, Yang X, et al. Single-atom catalysis of CO oxidation using Pt1/FeOx. Nat Chem 2011;3:634-41.

69. Yang XF, Wang A, Qiao B, Li J, Liu J, Zhang T. Single-atom catalysts: a new frontier in heterogeneous catalysis. Acc Chem Res 2013;46:1740-8.

70. Vilé G, Almora-Barrios N, Mitchell S, López N, Pérez-Ramírez J. From the Lindlar catalyst to supported ligand-modified palladium nanoparticles: selectivity patterns and accessibility constraints in the continuous-flow three-phase hydrogenation of acetylenic compounds. Chemistry 2014;20:5926-37.

71. Madon RJ, Boudart M. Experimental criterion for the absence of artifacts in the measurement of rates of heterogeneous catalytic reactions. Ind Eng Chem Fund 1982;21:438-47.

72. Jackson S, Shaw LA. The liquid-phase hydrogenation of phenyl acetylene and styrene on a palladium/carbon catalyst. Appl Catal A Gen 1996;134:91-9.

73. Cabello J, Campelo J, Garcia A, Luna D, Marinas J. AlPO4-supported rhodium catalysts: IV. Individual and competitive hydrogenation of styrene and α-methylstyrene. J Catal 1985;94:1-9.

74. Campelo JM, Garcia A, Luna D, Marinas JM. Liquid-phase hydrogenation on new AlPO4−SiO2 supported rhodium catalysts. React Kinet Catal Lett 1982;21:209-12.

75. Madon RJ, O’Connell JP, Boudart M. Catalytic hydrogenation of cyclohexene: Part II. Liquid phase reaction on supported platinum in a gradientless slurry reactor. AIChE J 1978;24:904-11.

76. Wilhite BA, Mccready MJ, Varma A. Kinetics of phenylacetylene hydrogenation over Pt/γ-Al2O3 catalyst. Ind Eng Chem Res 2002;41:3345-50.

77. Sachtler WMH. Chemisorption complexes on alloy surfaces. Catal Rev 1976;14:193-210.

78. Podkolzin SG, Alcalá R, Dumesic JA. Density functional theory studies of acetylene hydrogenation on clean, vinylidene- and ethylidyne-covered Pt(111) surfaces. J Mol Catal A Chem 2004;218:217-27.

79. Vilé G, Baudouin D, Remediakis IN, Copéret C, López N, Pérez-Ramírez J. Silver nanoparticles for olefin production: new insights into the mechanistic description of propyne hydrogenation. ChemCatChem 2013;5:3750-9.

80. Deng X, Bai R, Chai Y, Hu Z, Guan N, Li L. Homogeneous-like alkyne selective hydrogenation catalyzed by cationic nickel confined in zeolite. CCS Chem 2022;4:949-62.

81. Horiuti I, Polanyi M. Exchange reactions of hydrogen on metallic catalysts. Trans Faraday Soc 1934;30:1164-72.

82. Hoffman AJ, Asokan C, Gadinas N, et al. Experimental and theoretical characterization of Rh single atoms supported on γ-Al2O3 with varying hydroxyl contents during NO reduction by CO. ACS Catal 2022;12:11697-715.

83. Zhang Z, Berdugo-Díaz CE, Bregante DT, Zhang H, Flaherty DW. Aldol condensation and esterification over Ti-substituted *BEA zeolite: mechanisms and effects of pore hydrophobicity. ACS Catal 2022;12:1481-96.

84. Che L, Guo J, He Z, Zhang H. Evidence of rate-determining step variation along reactivity in acetylene hydrogenation: a systematic kinetic study on elementary steps, kinetically relevant(s) and active species. J Catal 2022;414:336-48.

85. He Z, He K, Robertson AW, et al. Atomic structure and dynamics of metal dopant pairs in graphene. Nano Lett 2014;14:3766-72.

86. Liu C, Li T, Dai X, et al. Catalytic activity enhancement on alcohol dehydrogenation via directing reaction pathways from single- to double-atom catalysis. J Am Chem Soc 2022;144:4913-24.

87. Zhao X, Wang F, Kong XP, Fang R, Li Y. Dual-metal hetero-single-atoms with different coordination for efficient synergistic catalysis. J Am Chem Soc 2021;143:16068-77.

88. Zhang X, Zhang M, Deng Y, et al. A stable low-temperature H2-production catalyst by crowding Pt on α-MoC. Nature 2021;589:396-401.

89. Li S, Cao R, Xu M, et al. Atomically dispersed Ir/α-MoC catalyst with high metal loading and thermal stability for water-promoted hydrogenation reaction. Natl Sci Rev 2022;9:nwab026.

90. Borodziński A, Bond GC. Selective hydrogenation of ethyne in ethene-rich streams on palladium catalysts, part 2: steady-state kinetics and effects of palladium particle size, carbon monoxide, and promoters. CatalRev 2008;50:379-469.

91. Liu K, Jiang L, Huang W, et al. Atomic overlayer of permeable microporous cuprous oxide on palladium promotes hydrogenation catalysis. Nat Commun 2022;13:2597.

92. Cheng G, Jentys A, Gutiérrez OY, Liu Y, Chin Y, Lercher JA. Critical role of solvent-modulated hydrogen-binding strength in the catalytic hydrogenation of benzaldehyde on palladium. Nat Catal 2021;4:976-85.

93. Shutt E, Winterbottom JM. Heterogeneous catalysis in the liquid phase. Platinum Met Rev 1971;15:94-9.

94. Aramendía M, Borau V, Jiménez C, Marinas J, Sempere M, Urbano F. Optimization of the selective semi-hydrogenation of phenylacetylene with supported palladium systems. Appl Catal 1990;63:375-89.

95. Studt F, Abild-Pedersen F, Bligaard T, Sørensen RZ, Christensen CH, Nørskov JK. Identification of non-precious metal alloy catalysts for selective hydrogenation of acetylene. Science 2008;320:1320-2.

Chemical Synthesis
ISSN 2769-5247 (Online)

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/