REFERENCES

1. Zhao, D.; Zhao, T. Pore engineering for high performance porous materials. ACS. Cent. Sci. 2023, 9, 1499-503.

2. Wang, Y.; Tong, C.; Liu, Q.; Han, R.; Liu, C. Intergrowth zeolites, synthesis, characterization, and catalysis. Chem. Rev. 2023, 123, 11664-721.

3. Chen, L. H.; Sun, M. H.; Wang, Z.; Yang, W.; Xie, Z.; Su, B. L. Hierarchically structured zeolites: from design to application. Chem. Rev. 2020, 120, 11194-294.

4. Yang, C.; Zhao, T.; Pan, H.; Liu, F.; Cao, J.; Lin, Q. Facile preparation of N-doped porous carbon from chitosan and NaNH2 for CO2 adsorption and conversion. Chem. Eng. J. 2022, 432, 134347.

5. Oliveira, A. D. N. D.; Cardoso, R. D. S.; Ferreira, I. M.; et al. Valorization of silica-based residues for the synthesis of ordered mesoporous silicas and their applications. Micropor. Mesopor. Mat. 2023, 354, 112520.

6. Su, Z.; Chen, T. Porous noble metal electrocatalysts: synthesis, performance, and development. Small 2021, 17, e2005354.

7. Hajivand, P.; Carolus, J. J.; Pardo, E.; Armentano, D.; Mastropietro, T. F.; Azadmehr, A. Application of metal-organic frameworks for sensing of VOCs and other volatile biomarkers. Coordin. Chem. Rev. 2024, 501, 215558.

8. Tian, Y.; Deng, C.; Peng, Y.; Zhang, X.; Zhang, Z.; Zaworotko, M. J. State of the art, challenges and prospects in metal–organic frameworks for the separation of binary propylene/propane mixtures. Coordin. Chem. Rev. 2024, 506, 215697.

9. Hao, Q.; Tao, Y.; Ding, X.; et al. Porous organic polymers: a progress report in China. Sci. China. Chem. 2023, 66, 620-82.

10. Diercks, C. S.; Yaghi, O. M. The atom, the molecule, and the covalent organic framework. Science 2017, 355, eaal1585.

11. Liu, M.; Huang, Q.; Wang, S.; et al. Crystalline covalent triazine frameworks by in situ oxidation of alcohols to aldehyde monomers. Angew. Chem. Int. Ed. Engl. 2018, 57, 11968-72.

12. Yuan, Y.; Yang, Y.; Zhu, G. Molecularly imprinted porous aromatic frameworks for molecular recognition. ACS. Cent. Sci. 2020, 6, 1082-94.

13. Ma, Y.; Cui, F.; Rong, H.; et al. Continuous porous aromatic framework membranes with modifiable sites for optimized gas separation. Angew. Chem. Int. Ed. Engl. 2022, 61, e202113682.

14. Shen, X.; Faheem, M.; Matsuo, Y.; et al. Polarity engineering of porous aromatic frameworks for specific water contaminant capture. J. Mater. Chem. A. 2019, 7, 2507-12.

15. Gong, J.; Lin, R.; Chen, B. Conjugated microporous polymers with rigid backbones for organic solvent nanofiltration. Chem 2018, 4, 2269-71.

16. Tantisriyanurak, S.; Duguid, H. N.; Peattie, L.; Dawson, R. Acid functionalized conjugated microporous polymers as a reusable catalyst for biodiesel production. ACS. Appl. Polym. Mater. 2020, 2, 3908-15.

17. Giri, A.; Biswas, S.; Hussain, M. W.; Dutta, T. K.; Patra, A. Nanostructured hypercrosslinked porous organic polymers: morphological evolution and rapid separation of polar organic micropollutants. ACS. Appl. Mater. Interfaces. 2022, 14, 7369-81.

18. Zhang, W.; Ma, F.; Ma, L.; Zhou, Y.; Wang, J. Imidazolium-functionalized ionic hypercrosslinked porous polymers for efficient synthesis of cyclic carbonates from simulated flue gas. ChemSusChem 2020, 13, 341-50.

19. Ren, H.; Zhu, G. Porous organic frameworks: synthetic strategy and their applications. Acta. Chim. Sinica. 2015, 73, 587.

20. Li, W.; Xiao, W.; Luo, Q.; et al. Ionic liquids promoted synthesis, enhanced functions, and expanded applications of porous organic frameworks. Coordin. Chem. Rev. 2023, 493, 215304.

21. He, C.; Wang, Y.; Chen, Y.; et al. Microregulation of pore channels in covalent-organic frameworks used for the selective and efficient separation of ethane. ACS. Appl. Mater. Interfaces. 2020, 12, 52819-25.

22. Liu, Y.; Wang, S.; Meng, X.; et al. Molecular expansion for constructing porous organic polymers with high surface areas and well-defined nanopores. Angew. Chem. Int. Ed. Engl. 2020, 59, 19487-93.

23. Cao, L.; Wang, C.; Wang, H.; et al. Rationally designed cyclooctatetrathiophene-based porous aromatic frameworks (COTh-PAFs) for efficient photocatalytic hydrogen peroxide production. Angew. Chem. Int. Ed. Engl. 2024, 63, e202402095.

24. Hauser, B. G.; Farha, O. K.; Exley, J.; Hupp, J. T. Thermally enhancing the surface areas of Yamamoto-derived porous organic polymers. Chem. Mater. 2013, 25, 12-6.

25. Zhang, Y.; Li, Z.; Zhang, C.; et al. Multifunctional porous organic polymers as ideal platforms for gas uptake, metal-ions sensing, and cell imaging. Polym. Chem. 2023, 14, 4199-204.

26. Xue, Y.; Zhang, H.; Han, Z.; He, H. Electrochemical impedimetric aptasensors based on hyper-cross-linked porous organic frameworks for the determination of kanamycin. J. Mater. Chem. C. 2021, 9, 12566-72.

27. He, H.; Wen, H.; Li, P.; et al. Tailor-made yolk-shell nanocomposites of star-shape Au and porous organic polymer for nitrogen electroreduction to ammonia. Chem. Eng. J. 2023, 476, 146760.

28. Xu, Z.; Liu, K.; Wang, S.; et al. Viologen-based cationic radical porous organic polymers for visible-light-driven photocatalytic oxidation. ACS. Appl. Polym. Mater. 2024, 6, 701-11.

29. Huang, J.; Peng, Q.; Liu, C.; et al. Microporous nitrogen-rich polymers via ullmann coupling reaction for selective adsorption of C2H2 over CH4. Chin. J. Chem. 2023, 41, 514-20.

30. Jadhav, T.; Fang, Y.; Patterson, W.; Liu, C. H.; Hamzehpoor, E.; Perepichka, D. F. 2D poly(arylene vinylene) covalent organic frameworks via aldol condensation of trimethyltriazine. Angew. Chem. Int. Ed. Engl. 2019, 58, 13753-7.

31. Chen, Y.; Li, W.; Wang, X.; Gao, R.; Tang, A.; Kong, D. Green synthesis of covalent organic frameworks based on reaction media. Mater. Chem. Front. 2021, 5, 1253-67.

32. Azadi, E.; Dinari, M. Green and facile preparation of covalent organic frameworks based on reaction medium for advanced applications. Chemistry 2023, 29, e202301837.

33. Das, S.; Heasman, P.; Ben, T.; Qiu, S. Porous organic materials: strategic design and structure-function correlation. Chem. Rev. 2017, 117, 1515-63.

34. Abdelnaby, M. M.; Cordova, K. E.; Abdulazeez, I.; et al. Novel porous organic polymer for the concurrent and selective removal of hydrogen sulfide and carbon dioxide from natural gas streams. ACS. Appl. Mater. Interfaces. 2020, 12, 47984-92.

35. Fan, H.; Peng, M.; Strauss, I.; Mundstock, A.; Meng, H.; Caro, J. High-flux vertically aligned 2D covalent organic framework membrane with enhanced hydrogen separation. J. Am. Chem. Soc. 2020, 142, 6872-7.

36. Nailwal, Y.; Devi, M.; Pal, S. K. Luminescent conjugated microporous polymers for selective sensing and ultrafast detection of picric acid. ACS. Appl. Polym. Mater. 2022, 4, 2648-55.

37. Afshari, M.; Dinari, M.; Farrokhpour, H.; Zamora, F. Imine-linked covalent organic framework with a naphthalene moiety as a sensitive phosphate ion sensing. ACS. Appl. Mater. Interfaces. 2022, 14, 22398-406.

38. Zhang, Y.; Guo, J.; VanNatta, P.; et al. Metal-free heterogeneous asymmetric hydrogenation of olefins promoted by chiral frustrated lewis pair framework. J. Am. Chem. Soc. 2024, 146, 979-87.

39. Chen, M.; Xiong, J.; Shi, Q.; et al. How the π bridge in donor-π-acceptor type covalent triazine frameworks influenced their photocatalytic hydrogen evolution performance. Chem. Eng. J. 2023, 475, 146099.

40. Yang, S.; Chen, Z.; Zou, L.; Cao, R. Construction of thiadiazole-linked covalent organic frameworks via facile linkage conversion with superior photocatalytic properties. Adv. Sci. 2023, 10, e2304697.

41. Gu, C.; Huang, N.; Chen, Y.; et al. Porous organic polymer films with tunable work functions and selective hole and electron flows for energy conversions. Angew. Chem. Int. Ed. Engl. 2016, 55, 3049-53.

42. Liao, C.; Liu, S. Tuning the physicochemical properties of reticular covalent organic frameworks (COFs) for biomedical applications. J. Mater. Chem. B. 2021, 9, 6116-28.

43. Prakash, K.; Mishra, B.; Díaz, D. D.; Nagaraja, C. M.; Pachfule, P. Strategic design of covalent organic frameworks (COFs) for photocatalytic hydrogen generation. J. Mater. Chem. A. 2023, 11, 14489-538.

44. Cui, K.; Tang, X.; Xu, X.; Kou, M.; Lyu, P.; Xu, Y. Crystalline dual-porous covalent triazine frameworks as a new platform for efficient electrocatalysis. Angew. Chem. Int. Ed. Engl. 2024, 63, e202317664.

45. Xiong, S.; Guo, J.; Lv, F.; et al. Solvothermal synthesis and supercapacitive properties of highly electrochemical stable covalent organic frameworks with triazine building block. J. Appl. Polym. Sci. 2023, 140, e54538.

46. Côté, A. P.; Benin, A. I.; Ockwig, N. W.; O'Keeffe, M.; Matzger, A. J.; Yaghi, O. M. Porous, crystalline, covalent organic frameworks. Science 2005, 310, 1166-70.

47. Li, H.; Chavez, A. D.; Li, H.; Li, H.; Dichtel, W. R.; Bredas, J. L. Nucleation and growth of covalent organic frameworks from solution: the example of COF-5. J. Am. Chem. Soc. 2017, 139, 16310-8.

48. Li, X.; Jin, X.; Ma, L.; et al. Construction of borate-ester-based COFs with high specific surface area for the detection of H2O content in the food field. Microchem. J. 2024, 199, 109976.

49. Chang, P. H.; Sil, M. C.; Reddy, K. S. K.; Lin, C. H.; Chen, C. M. Polyimide-based covalent organic framework as a photocurrent enhancer for efficient dye-sensitized solar cells. ACS. Appl. Mater. Interfaces. 2022, 14, 25466-77.

50. DeBlase, C. R.; Silberstein, K. E.; Truong, T. T.; Abruña, H. D.; Dichtel, W. R. β-Ketoenamine-linked covalent organic frameworks capable of pseudocapacitive energy storage. J. Am. Chem. Soc. 2013, 135, 16821-4.

51. Yu, H.; Wang, D. Metal-free magnetism in chemically doped covalent organic frameworks. J. Am. Chem. Soc. 2020, 142, 11013-21.

52. Yang, C.; Hu, H.; Qian, C.; Liao, Y. Hollow sp2 -conjugated covalent organic framework encapsulating thiophene-based photosensitizer for enhanced visible-light-driven hydrogen evolution. J. Mater. Chem. A. 2023, 11, 25899-909.

53. Yang, N.; Gu, Y.; Shan, Y.; et al. Dual rate-modulation approach for the preparation of crystalline covalent triazine frameworks displaying efficient sodium storage. ACS. Macro. Lett. 2022, 11, 60-5.

54. Martín-Illán, J. Á.; Suárez, J. A.; Gómez-Herrero, J.; et al. Ultralarge free-standing imine-based covalent organic framework membranes fabricated via compression. Adv. Sci. 2022, 9, e2104643.

55. Yao, B. J.; Li, J. T.; Huang, N.; et al. Pd NP-loaded and covalently cross-linked COF membrane microreactor for aqueous CBs dechlorination at room temperature. ACS. Appl. Mater. Interfaces. 2018, 10, 20448-57.

56. Parvatkar, P. T.; Kandambeth, S.; Shaikh, A. C.; et al. A tailored COF for visible-light photosynthesis of 2,3-dihydrobenzofurans. J. Am. Chem. Soc. 2023, 145, 5074-82.

57. Campbell, A.; Alsudairy, Z.; Dun, C.; et al. Dioxin-linked covalent organic framework-supported palladium complex for rapid room-temperature Suzuki–Miyaura coupling reaction. Crystals 2023, 13, 1268.

58. Luan, T. X.; Du, L.; Wang, J. R.; et al. Highly effective generation of singlet oxygen by an imidazole-linked robust photosensitizing covalent organic framework. ACS. Nano. 2022, 16, 21565-75.

59. Seo, J. M.; Noh, H. J.; Jeon, J. P.; et al. Conductive and ultrastable covalent organic framework/carbon hybrid as an ideal electrocatalytic platform. J. Am. Chem. Soc. 2022, 144, 19973-80.

60. Jaryal, R.; Khullar, S.; Kumar, R. Benzothiazole-derived covalent organic framework for multimedia iodine uptake. J. Clust. Sci. 2024, 35, 461-79.

61. Yang, Z.; Chen, H.; Wang, S.; et al. Transformation strategy for highly crystalline covalent triazine frameworks: from staggered AB to eclipsed AA stacking. J. Am. Chem. Soc. 2020, 142, 6856-60.

62. Guo, L.; Wang, X.; Zhan, Z.; et al. Crystallization of covalent triazine frameworks via a heterogeneous nucleation approach for efficient photocatalytic applications. Chem. Mater. 2021, 33, 1994-2003.

63. Wang, H.; Shi, L.; Qu, Z.; et al. Increasing donor-acceptor interactions and particle dispersibility of covalent triazine frameworks for higher crystallinity and enhanced photocatalytic activity. ACS. Appl. Mater. Interfaces. 2024, 16, 2296-308.

64. Ma, T.; Kapustin, E. A.; Yin, S. X.; et al. Single-crystal x-ray diffraction structures of covalent organic frameworks. Science 2018, 361, 48-52.

65. Xu, H. S.; Luo, Y.; Li, X.; et al. Single crystal of a one-dimensional metallo-covalent organic framework. Nat. Commun. 2020, 11, 1434.

66. Wang, X.; Enomoto, R.; Murakami, Y. Ionic additive strategy to control nucleation and generate larger single crystals of 3D covalent organic frameworks. Chem. Commun. 2021, 57, 6656-9.

67. Natraj, A.; Ji, W.; Xin, J.; et al. Single-crystalline imine-linked two-dimensional covalent organic frameworks separate benzene and cyclohexane efficiently. J. Am. Chem. Soc. 2022, 144, 19813-24.

68. Zhou, Z.; Xiong, X. H.; Zhang, L.; et al. Linker-guided growth of single-crystal covalent organic frameworks. J. Am. Chem. Soc. 2024, 146, 3449-57.

69. Zhou, Z.; Zhang, L.; Yang, Y.; et al. Growth of single-crystal imine-linked covalent organic frameworks using amphiphilic amino-acid derivatives in water. Nat. Chem. 2023, 15, 841-7.

70. Liu, T.; Liu, G. Porous organic materials offer vast future opportunities. Nat. Commun. 2020, 11, 4984.

71. Wang, W.; Zhou, M.; Yuan, D. Carbon dioxide capture in amorphous porous organic polymers. J. Mater. Chem. A. 2017, 5, 1334-47.

72. Zhang, Y.; Riduan, S. N. Functional porous organic polymers for heterogeneous catalysis. Chem. Soc. Rev. 2012, 41, 2083-94.

73. Ben, T.; Ren, H.; Ma, S.; et al. Targeted synthesis of a porous aromatic framework with high stability and exceptionally high surface area. Angew. Chem. Int. Ed. Engl. 2009, 48, 9457-60.

74. Kim, J. H.; Kang, D. W.; Yun, H.; et al. Post-synthetic modifications in porous organic polymers for biomedical and related applications. Chem. Soc. Rev. 2022, 51, 43-56.

75. Zhang, Z.; Liu, Z.; Xue, C.; Chen, H.; Han, X.; Ren, Y. Amorphous porous organic polymers containing main group elements. Commun. Chem. 2023, 6, 271.

76. Yuan, Y.; Meng, Q.; Faheem, M.; et al. A molecular coordination template strategy for designing selective porous aromatic framework materials for uranyl capture. ACS. Cent. Sci. 2019, 5, 1432-9.

77. Ma, T.; Zhao, R.; Li, Z.; et al. Efficient gold recovery from E-waste via a chelate-containing porous aromatic framework. ACS. Appl. Mater. Interfaces. 2020, 12, 30474-82.

78. Li, B.; Sun, Q.; Zhang, Y.; et al. Functionalized porous aromatic framework for efficient uranium adsorption from aqueous solutions. ACS. Appl. Mater. Interfaces. 2017, 9, 12511-7.

79. Luo, D.; Shi, T.; Li, Q. H.; et al. Green, general and low-cost synthesis of porous organic polymers in sub-kilogram scale for catalysis and CO2 capture. Angew. Chem. Int. Ed. Engl. 2023, 62, e202305225.

80. Park, J. I.; Jang, J. Y.; Ko, Y. J.; et al. Room-temperature synthesis of a hollow microporous organic polymer bearing activated alkyne IR probes for nonradical thiol-yne click-based post-functionalization. Chem. Asian. J. 2021, 16, 1398-402.

81. Zhang, F.; Hong, M.; Liu, Z.; et al. Facile room-temperature synthesis of novel porous three-component hybrid covalent organic polymers and their applications towards sulfadiazine adsorption. ChemistrySelect 2019, 4, 12719-25.

82. Zhao, Y.; Lu, W.; Zhang, Y.; Liu, X.; Sun, B. Room temperature synthesis of piperazine-based nitrogen-rich porous organic polymers for efficient iodine adsorption. Micropor. Mesopor. Mat. 2024, 366, 112954.

83. Ma, W.; Zheng, Q.; He, Y.; et al. Size-controllable synthesis of uniform spherical covalent organic frameworks at room temperature for highly efficient and selective enrichment of hydrophobic peptides. J. Am. Chem. Soc. 2019, 141, 18271-7.

84. Ma, W.; Li, G.; Zhong, C.; et al. Room-temperature controllable synthesis of hierarchically flower-like hollow covalent organic frameworks for brain natriuretic peptide enrichment. Chem. Commun. 2021, 57, 7362-5.

85. Guo, L.; Zhang, Q. Y.; Yu, Z.; Krishna, R.; Luo, F. Minute and large-scale synthesis of covalent-organic frameworks in water at room temperature by a two-step dissolution–precipitation method. Chem. Mater. 2023, 35, 5648-56.

86. Kong, X.; Wu, Z.; Strømme, M.; Xu, C. Ambient aqueous synthesis of imine-linked covalent organic frameworks (COFs) and fabrication of freestanding cellulose nanofiber@COF nanopapers. J. Am. Chem. Soc. 2024, 146, 742-51.

87. Liang, J.; Ruan, J.; Njegic, B.; et al. Insight into bioactivity of in-situ trapped enzyme-covalent-organic frameworks. Angew. Chem. Int. Ed. Engl. 2023, 62, e202303001.

88. Zhou, D.; Tan, X.; Wu, H.; Tian, L.; Li, M. Synthesis of C-C bonded two-dimensional conjugated covalent organic framework films by Suzuki polymerization on a liquid-liquid interface. Angew. Chem. Int. Ed. Engl. 2019, 58, 1376-81.

89. Sahabudeen, H.; Qi, H.; Ballabio, M.; et al. Highly crystalline and semiconducting imine-based two-dimensional polymers enabled by interfacial synthesis. Angew. Chem. Int. Ed. Engl. 2020, 59, 6028-36.

90. He, J.; Yu, L.; Li, Z.; Ba, S.; Lan, F.; Wu, Y. Catalyst regulated interfacial synthesis of self-standing covalent organic framework membranes at room temperature for molecular separation. J. Colloid. Interface. Sci. 2023, 629, 428-37.

91. Wu, D.; Che, Q.; He, H.; et al. Room-temperature interfacial synthesis of vinylene-bridged two-dimensional covalent organic framework thin film for nonvolatile memory. ACS. Mater. Lett. 2023, 5, 874-83.

92. Chen, J.; Li, R.; Liu, S.; et al. Surfactant-assisted interfacial polymerization towards high-crystallinity COF membranes for organic solvent nanofiltration. J. Membrane. Sci. 2024, 694, 122404.

93. Li, K.; Zhu, J.; Liu, D.; Zhang, Y.; Van, B. B. Controllable and rapid synthesis of conjugated microporous polymer membranes via interfacial polymerization for ultrafast molecular separation. Chem. Mater. 2021, 33, 7047-56.

94. Zhang, J.; Cheng, C.; Guan, L.; Jiang, H. L.; Jin, S. Rapid synthesis of covalent organic frameworks with a controlled morphology: an emulsion polymerization approach via the phase transfer catalysis mechanism. J. Am. Chem. Soc. 2023, 145, 21974-82.

95. Shi, L.; Li, W.; Wu, Y.; et al. Controlled synthesis of mesoporous π-conjugated polymer nanoarchitectures as anodes for lithium-ion batteries. Macromol. Rapid. Commun. 2022, 43, e2100897.

96. Zhao, W.; Yan, P.; Yang, H.; et al. Using sound to synthesize covalent organic frameworks in water. Nat. Synth. 2022, 1, 87-95.

97. Wang, H.; Zhao, J.; Li, Y.; et al. Aqueous two-phase interfacial assembly of COF membranes for water desalination. Nanomicro. Lett. 2022, 14, 216.

98. Hu, F.; Hu, Z.; Liu, Y.; et al. Aqueous sol-gel synthesis and shaping of covalent organic frameworks. J. Am. Chem. Soc. 2023, 145, 27718-27.

99. Zhang, Z.; Xu, Y. Hydrothermal synthesis of highly crystalline zwitterionic vinylene-linked covalent organic frameworks with exceptional photocatalytic properties. J. Am. Chem. Soc. 2023, 145, 25222-32.

100. Yang, Y.; Sabaghi, D.; Liu, C.; et al. On-water surface synthesis of vinylene-linked cationic two-dimensional polymer films as the anion-selective electrode coating. Angew. Chem. Int. Ed. Engl. 2024, 63, e202316299.

101. Liu, Y.; Wang, Y.; Li, H.; et al. Ambient aqueous-phase synthesis of covalent organic frameworks for degradation of organic pollutants. Chem. Sci. 2019, 10, 10815-20.

102. Martín-Illán, J. Á.; Rodríguez-San-Miguel, D.; Franco, C.; et al. Green synthesis of imine-based covalent organic frameworks in water. Chem. Commun. 2020, 56, 6704-7.

103. Zhao, B.; He, M.; Chen, B.; Hu, B. Facile green synthesis of magnetic porous organic polymers for fast preconcentration of trace lead and mercury from environmental water followed by graphite furnace atomic absorption spectrometry detection. Spectrochim. Acta. B. 2022, 196, 106524.

104. Huang, L.; He, M.; Chen, B.; Cheng, Q.; Hu, B. Facile green synthesis of magnetic porous organic polymers for rapid removal and separation of methylene blue. ACS. Sustain. Chem. Eng. 2017, 5, 4050-5.

105. Kuhn, P.; Antonietti, M.; Thomas, A. Porous, covalent triazine-based frameworks prepared by ionothermal synthesis. Angew. Chem. Int. Ed. Engl. 2008, 47, 3450-3.

106. Dong, B.; Wang, D.; Wang, W.; Tian, X.; Ren, G. Post synthesis of a glycine-functionalized covalent triazine framework with excellent CO2 capture performance. Micropor. Mesopor. Mat. 2020, 306, 110475.

107. Jiang, K.; Peng, P.; Tranca, D.; et al. Covalent triazine frameworks and porous carbons: perspective from an azulene-based case. Macromol. Rapid. Commun. 2022, 43, e2200392.

108. Mohamed, M. G.; Sharma, S. U.; Liu, N. Y.; et al. Ultrastable covalent triazine organic framework based on anthracene moiety as platform for high-performance carbon dioxide adsorption and supercapacitors. Int. J. Mol. Sci. 2022, 23, 3174.

109. Wang, G.; Leus, K.; Zhao, S.; Van, D. V. P. Newly designed covalent triazine framework based on novel N-heteroaromatic building blocks for efficient CO2 and H2 capture and storage. ACS. Appl. Mater. Interfaces. 2018, 10, 1244-9.

110. Mohamed, M. G.; El-mahdy, A. F. M.; Takashi, Y.; Kuo, S. Ultrastable conductive microporous covalent triazine frameworks based on pyrene moieties provide high-performance CO2 uptake and supercapacitance. New. J. Chem. 2020, 44, 8241-53.

111. Rangaraj, V. M.; Reddy, K. S. K.; Karanikolos, G. N. Ionothermal synthesis of phosphonitrilic-core covalent triazine frameworks for carbon dioxide capture. Chem. Eng. J. 2022, 429, 132160.

112. Lan, Z. A.; Wu, M.; Fang, Z.; et al. Ionothermal synthesis of covalent triazine frameworks in a NaCl-KCl-ZnCl2 eutectic salt for the hydrogen evolution reaction. Angew. Chem. Int. Ed. Engl. 2022, 61, e202201482.

113. Wang, C.; Lyu, P.; Chen, Z.; Xu, Y. Green and scalable synthesis of atomic-thin crystalline two-dimensional triazine polymers with ultrahigh photocatalytic properties. J. Am. Chem. Soc. 2023, 145, 12745-54.

114. Yu, S. Y.; Mahmood, J.; Noh, H. J.; et al. Direct synthesis of a covalent triazine-based framework from aromatic amides. Angew. Chem. Int. Ed. Engl. 2018, 57, 8438-42.

115. Niu, F.; Shao, Z.; Tao, L.; Ding, Y. Covalent triazine-based frameworks for NH3 gas sensing at room temperature. Sensor. Actuat. B. Chem. 2020, 321, 128513.

116. Sun, T.; Liang, Y.; Luo, W.; Zhang, L.; Cao, X.; Xu, Y. A general strategy for kilogram-scale preparation of highly crystal-line covalent triazine frameworks. Angew. Chem. Int. Ed. Engl. 2022, 61, e202203327.

117. Zhang, P.; Wang, Z.; Wang, S.; et al. Fabricating industry-compatible olefin-linked COF resins for oxoanion pollutant scavenging. Angew. Chem. Int. Ed. Engl. 2022, 61, e202213247.

118. Wang, Z.; Zhang, Y.; Wang, T.; et al. Organic flux synthesis of covalent organic frameworks. Chem 2023, 9, 2178-93.

119. Krusenbaum, A.; Grätz, S.; Tigineh, G. T.; Borchardt, L.; Kim, J. G. The mechanochemical synthesis of polymers. Chem. Soc. Rev. 2022, 51, 2873-905.

120. Kubota, K.; Ito, H. Mechanochemical cross-coupling reactions. Trend. Chem. 2020, 2, 1066-81.

121. Leonardi, M.; Villacampa, M.; Menéndez, J. C. Multicomponent mechanochemical synthesis. Chem. Sci. 2018, 9, 2042-64.

122. Shinde, D. B.; Aiyappa, H. B.; Bhadra, M.; et al. A mechanochemically synthesized covalent organic framework as a proton-conducting solid electrolyte. J. Mater. Chem. A. 2016, 4, 2682-90.

123. Liu, W.; Cao, Y.; Wang, W.; et al. Mechanochromic luminescent covalent organic frameworks for highly selective hydroxyl radical detection. Chem. Commun. 2018, 55, 167-70.

124. Zhang, X.; Xue, S.; Yan, Y.; Liu, S.; Ye, Q.; Zhou, F. Mechanochemical synthesis of thiadiazole functionalized COF as oil-based lubricant additive for reducing friction and wear. Langmuir 2024, 40, 4373-81.

125. Rajput, L.; Banerjee, R. Mechanochemical synthesis of amide functionalized porous organic polymers. Cryst. Growth. Des. 2014, 14, 2729-32.

126. Li, G.; Ye, J.; Fang, Q.; Liu, F. Amide-based covalent organic frameworks materials for efficient and recyclable removal of heavy metal lead (II). Chem. Eng. J. 2019, 370, 822-30.

127. Jie, K.; Zhou, Y.; Sun, Q.; et al. Mechanochemical synthesis of pillar[5]quinone derived multi-microporous organic polymers for radioactive organic iodide capture and storage. Nat. Commun. 2020, 11, 1086.

128. Troschke, E.; Grätz, S.; Lübken, T.; Borchardt, L. Mechanochemical Friedel-Crafts alkylation-A sustainable pathway towards porous organic polymers. Angew. Chem. Int. Ed. Engl. 2017, 56, 6859-63.

129. Chen, X.; Yuan, Z.; Zhong, Y.; Sun, F.; Ren, H. Synthesis of a series of porous aromatic frameworks by mechanical ball milling. New. J. Chem. 2022, 46, 22504-8.

130. Krusenbaum, A.; Geisler, J.; Kraus, F. J. L.; et al. The mechanochemical Friedel-Crafts polymerization as a solvent-free cross-linking approach toward microporous polymers. J. Polym. Sci. 2022, 60, 62-71.

131. Yuan, R.; Yan, Z.; Shaga, A.; He, H. Solvent-free mechanochemical synthesis of a carbazole-based porous organic polymer with high CO2 capture and separation. J. Solid. State. Chem. 2020, 287, 121327.

132. Krusenbaum, A.; Kraus, F. J. L.; Hutsch, S.; et al. The rapid mechanochemical synthesis of microporous covalent triazine networks: elucidating the role of chlorinated linkers by a solvent-free approach. Adv. Sustain. Syst. 2023, 7, 2200477.

133. Pan, Q.; Xu, Z.; Deng, S.; et al. A mechanochemically synthesized porous organic polymer derived CQD/chitosan-graphene composite film electrode for electrochemiluminescence determination of dopamine. RSC. Adv. 2019, 9, 39332-7.

134. Zhang, P.; Jiang, X.; Wan, S.; Dai, S. Charged porous polymers using a solid C-O cross-coupling reaction. Chemistry 2015, 21, 12866-70.

135. Hou, S.; Meng, M.; Liu, D.; Zhang, P. Mechanochemical process to construct porous ionic polymers by menshutkin reaction. ChemSusChem 2021, 14, 3059-63.

136. Tao, Y.; Liu, H.; Kong, H. Y.; et al. Electrochemical preparation of porous organic polymer films for high-performance memristors. Angew. Chem. Int. Ed. Engl. 2022, 61, e202205796.

137. Zhang, M.; Jing, X.; Zhao, S.; et al. Electropolymerization of molecular-sieving polythiophene membranes for H2 separation. Angew. Chem. Int. Ed. Engl. 2019, 58, 8768-72.

138. Gu, C.; Huang, N.; Chen, Y.; et al. π-Conjugated microporous polymer films: designed synthesis, conducting properties, and photoenergy conversions. Angew. Chem. Int. Ed. Engl. 2015, 54, 13594-8.

139. Shirokura, T.; Hirohata, T.; Sato, K.; et al. Site-selective synthesis and concurrent immobilization of imine-based covalent organic frameworks on electrodes using an electrogenerated acid. Angew. Chem. Int. Ed. Engl. 2023, 62, e202307343.

140. Wang, M.; Wang, Y.; Zhao, J.; et al. Electrochemical interfacial polymerization toward ultrathin COF membranes for brine desalination. Angew. Chem. Int. Ed. Engl. 2023, 62, e202219084.

141. Wang, L.; Xu, C.; Zhang, W.; et al. Electrocleavage synthesis of solution-processed, imine-linked, and crystalline covalent organic framework thin films. J. Am. Chem. Soc. 2022, 144, 8961-8.

142. Gu, C.; Huang, N.; Gao, J.; Xu, F.; Xu, Y.; Jiang, D. Controlled synthesis of conjugated microporous polymer films: versatile platforms for highly sensitive and label-free chemo- and biosensing. Angew. Chem. Int. Ed. Engl. 2014, 53, 4850-5.

143. Long, J.; Liu, Y.; Huang, Z.; et al. Electropolymerization of preferred-oriented conjugated microporous polymer films for enhanced fluorescent sensing. Chemistry 2024, 30, e202304268.

144. Gu, C.; Huang, N.; Wu, Y.; Xu, H.; Jiang, D. Design of highly photofunctional porous polymer films with controlled thickness and prominent microporosity. Angew. Chem. Int. Ed. Engl. 2015, 54, 11540-4.

145. Zhou, Z.; Guo, D.; Shinde, D. B.; et al. Precise sub-angstrom ion separation using conjugated microporous polymer membranes. ACS. Nano. 2021, 15, 11970-80.

146. Zhou, Z.; Shinde, D. B.; Guo, D.; et al. Flexible ionic conjugated microporous polymer membranes for fast and selective ion transport. Adv. Funct. Mater. 2022, 32, 2108672.

147. Chen, D.; Li, Y.; Zhao, X.; et al. Self-standing porous aromatic framework electrodes for efficient electrochemical uranium extraction. ACS. Cent. Sci. 2023, 9, 2326-32.

148. Kim, S.; Park, C.; Lee, M.; et al. Rapid photochemical synthesis of sea-urchin-shaped hierarchical porous COF-5 and its lithography-free patterned growth. Adv. Funct. Mater. 2017, 27, 1700925.

149. Wei, H.; Chai, S.; Hu, N.; Yang, Z.; Wei, L.; Wang, L. The microwave-assisted solvothermal synthesis of a crystalline two-dimensional covalent organic framework with high CO2 capacity. Chem. Commun. 2015, 51, 12178-81.

150. Alsudairy, Z.; Brown, N.; Yang, C.; et al. Facile microwave-assisted synthesis of 2D imine-linked covalent organic frameworks for exceptional iodine capture. Precis. Chem. 2023, 1, 233-40.

151. Wang, X.; Chi, X.; Li, M.; Guan, D.; Miao, C.; Xu, J. An integrated solid-state lithium-oxygen battery with highly stable anionic covalent organic frameworks electrolyte. Chem 2023, 9, 394-410.

152. Wu, C. J.; Li, X. Y.; Li, T. R.; et al. Natural sunlight photocatalytic synthesis of benzoxazole-bridged covalent organic framework for photocatalysis. J. Am. Chem. Soc. 2022, 144, 18750-5.

153. Wang, F.; Qiu, Y.; Wang, B.; Wang, H.; Long, Y. Green method to fabricate porous microspheres for ultrasensitive SERS detection using UV light. RSC. Adv. 2016, 6, 100519-25.

154. Jaszcz, K. Highly porous crosslinked poly(ester-anhydride) microspheres with high loading efficiency. Chin. J. Polym. Sci. 2015, 33, 1271-82.

155. Tao, J.; Wu, K.; Chen, Y.; et al. A facile one-pot strategy for the preparation of porous polymeric microspheres via UV irradiation-induced polymerization in emulsions. Soft. Matter. 2023, 19, 1407-17.

Chemical Synthesis
ISSN 2769-5247 (Online)

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/