1. Li, M.; Lu, J.; Chen, Z.; Amine, K. 30 years of lithium-ion batteries. Adv. Mater. 2018, 30, e1800561.
2. Weiss, M.; Ruess, R.; Kasnatscheew, J.; et al. Fast charging of lithium-ion batteries: a review of materials aspects. Adv. Energy. Mater. 2021, 11, 2101126.
3. Xu, J.; Cai, X.; Cai, S.; et al. High-energy lithium-ion batteries: recent progress and a promising future in applications. Energy. Environ. Maters. 2023, 6, e12450.
4. Nayak, P. K.; Yang, L.; Brehm, W.; Adelhelm, P. From lithium-ion to sodium-ion batteries: advantages, challenges, and surprises. Angew. Chem. Int. Ed. Engl. 2018, 57, 102-20.
5. Chayambuka, K.; Mulder, G.; Danilov, D. L.; Notten, P. H. L. From Li-ion batteries toward Na-ion chemistries: challenges and opportunities. Adv. Energy. Mater. 2020, 10, 2001310.
6. Huang, Y.; Zhao, L.; Li, L.; Xie, M.; Wu, F.; Chen, R. Electrolytes and electrolyte/electrode interfaces in sodium-ion batteries: from scientific research to practical application. Adv. Mater. 2019, 31, e1808393.
7. Qiao, S.; Zhou, Q.; Ma, M.; Liu, H. K.; Dou, S. X.; Chong, S. Advanced anode materials for rechargeable sodium-ion batteries. ACS. Nano. 2023, 17, 11220-52.
8. Chen, J.; Adit, G.; Li, L.; Zhang, Y.; Chua, D. H. C.; Lee, P. S. Optimization strategies toward functional sodium-ion batteries. Energy. Environ. Mater. 2023, 6, e12633.
9. Chen, X.; Yin, X.; Aslam, J.; Sun, W.; Wang, Y. Recent progress and design principles for rechargeable lithium organic batteries. Electrochem. Energy. Rev. 2022, 5, 135.
10. Wu, X.; Feng, X.; Yuan, J.; et al. Thiophene functionalized porphyrin complexes as novel bipolar organic cathodes with high energy density and long cycle life. Energy. Storage. Mater. 2022, 46, 252-8.
11. Yang, G.; Zhu, Y.; Zhao, Q.; et al. Advanced organic electrode materials for aqueous rechargeable batteries. Sci. China. Chem. 2024, 67, 137-64.
12. Zhang, X.; Xing, P.; Madanu, T. L.; Li, J.; Shu, J.; Su, B. L. Aqueous batteries: from laboratory to market. Natl. Sci. Rev. 2023, 10, nwad235.
13. Zhang, H.; Gao, Y.; Liu, X.; et al. Long-cycle-life cathode materials for sodium-ion batteries toward large-scale energy storage systems. Adv. Energy. Mater. 2023, 13, 2300149.
14. Yao, H.; Zheng, L.; Xin, S.; Guo, Y. Air-stability of sodium-based layered-oxide cathode materials. Sci. China. Chem. 2022, 65, 1076-87.
15. Ma, Y.; Hu, Y.; Pramudya, Y.; et al. Resolving the role of configurational entropy in improving cycling performance of multicomponent hexacyanoferrate cathodes for sodium-ion batteries. Adv. Funct. Mater. 2022, 32, 2202372.
16. Hao, Z.; Shi, X.; Yang, Z.; et al. The distance between phosphate-based polyanionic compounds and their practical application for sodium-ion batteries. Adv. Mater. 2024, 36, e2305135.
17. Pramanik, A.; Manche, A. G.; Sougrati, M. T.; Chadwick, A. V.; Lightfoot, P.; Armstrong, A. R. K2Fe(C2O4)2: an oxalate cathode for Li/Na-ion batteries exhibiting a combination of multielectron cation and anion redox. Chem. Mater. 2023, 35, 2600-11.
18. Lin, X.; Yang, X.; Chen, H.; et al. In situ characterizations of advanced electrode materials for sodium-ion batteries toward high electrochemical performances. J. Energy. Chem. 2023, 76, 146-64.
19. Chen, X.; Liu, C.; Fang, Y.; et al. Understanding of the sodium storage mechanism in hard carbon anodes. Carbon. Energy. 2022, 4, 1133-50.
20. Zhao, L.; Hu, Z.; Lai, W.; et al. Hard carbon anodes: fundamental understanding and commercial perspectives for Na-ion batteries beyond Li-ion and K-ion counterparts. Adv. Energy. Mater. 2021, 11, 2002704.
21. Li, Y.; Lu, Y.; Adelhelm, P.; Titirici, M. M.; Hu, Y. S. Intercalation chemistry of graphite: alkali metal ions and beyond. Chem. Soc. Rev. 2019, 48, 4655-87.
22. Peng, P.; Wu, Y.; Li, X.; et al. Toward superior lithium/sodium storage performance: design and construction of novel TiO2-based anode materials. Rare. Met. 2021, 40, 3049-75.
23. Dong, J.; Jiang, Y.; Wang, R.; Wei, Q.; An, Q.; Zhang, X. Review and prospects on the low-voltage Na2Ti3O7 anode materials for sodium-ion batteries. J. Energy. Chem. 2024, 88, 446-60.
24. Yang, Z.; Zhang, J.; Kintner-Meyer, M. C.; et al. Electrochemical energy storage for green grid. Chem. Rev. 2011, 111, 3577-613.
25. Lin, X.; Chen, J.; Fan, J.; et al. Synthesis and operando sodiation mechanistic study of nitrogen-doped porous carbon coated bimetallic sulfide hollow nanocubes as advanced sodium ion battery anode. Adv. Energy. Mater. 2019, 9, 1902312.
26. Konkena, B.; Kalapu, C.; Kaur, H.; et al. Cobalt oxide 2D nanosheets formed at a polarized liquid|liquid interface toward high-performance Li-ion and Na-ion battery anodes. ACS. Appl. Mater. Interfaces. 2023, 15, 58320-32.
27. Yang, X. T.; Huang, T. Y.; Wang, Y. H.; et al. Understanding the origin of the improved sodium ion storage performance of the transition metal oxide@carbon nanocomposite anodes. J. Chem. Phys. 2023, 158, 174708.
28. Wu, Y.; Yao, Y.; Wang, L.; Yu, Y. Recent progress on modification strategies of alloy-based anode materials for alkali-ion batteries. Chem. Res. Chin. Univ. 2021, 37, 200-9.
29. Wu, X.; Lan, X.; Hu, R.; Yao, Y.; Yu, Y.; Zhu, M. Tin-based anode materials for stable sodium storage: progress and perspective. Adv. Mater. 2022, 34, e2106895.
30. Tan, M.; Han, S.; Li, Z.; Cui, H.; Lei, D.; Wang, C. Compact Sn/C composite realizes long-life sodium-ion batteries. Nano. Res. 2023, 16, 3804-13.
31. Huang, H.; Xu, R.; Feng, Y.; et al. Sodium/potassium-ion batteries: boosting the rate capability and cycle life by combining morphology, defect and structure engineering. Adv. Mater. 2020, 32, e1904320.
32. Guo, S.; Yi, J.; Sun, Y.; Zhou, H. Recent advances in titanium-based electrode materials for stationary sodium-ion batteries. Energy. Environ. Sci. 2016, 9, 2978-3006.
33. Lao, M.; Zhang, Y.; Luo, W.; Yan, Q.; Sun, W.; Dou, S. X. Alloy-based anode materials toward advanced sodium-ion batteries. Adv. Mater. 2017, 29, 1700622.
34. Zhang, M.; Li, Y.; Wu, F.; Bai, Y.; Wu, C. Boost sodium-ion batteries to commercialization: strategies to enhance initial coulombic efficiency of hard carbon anode. Nano. Energy. 2021, 82, 105738.
35. He, H.; Sun, D.; Tang, Y.; Wang, H.; Shao, M. Understanding and improving the initial Coulombic efficiency of high-capacity anode materials for practical sodium ion batteries. Energy. Storage. Mater. 2019, 23, 233-51.
36. Li, Y.; Chen, M.; Liu, B.; Zhang, Y.; Liang, X.; Xia, X. Heteroatom doping: an effective way to boost sodium ion storage. Adv. Energy. Mater. 2020, 10, 2000927.
37. Zhao, R.; Sun, N.; Xu, B. Recent advances in heterostructured carbon materials as anodes for sodium-ion batteries. Small. Struct. 2021, 2, 2100132.
38. Li, Y.; Wu, F.; Li, Y.; et al. Ether-based electrolytes for sodium ion batteries. Chem. Soc. Rev. 2022, 51, 4484-536.
39. Tian, Z.; Zou, Y.; Liu, G.; et al. Electrolyte solvation structure design for sodium ion batteries. Adv. Sci. 2022, 9, e2201207.
40. Cheng, H.; Sun, Q.; Li, L.; et al. Emerging era of electrolyte solvation structure and interfacial model in batteries. ACS. Energy. Lett. 2022, 7, 490-513.
41. Pei, Z.; Meng, Q.; Wei, L.; Fan, J.; Chen, Y.; Zhi, C. Toward efficient and high rate sodium-ion storage: a new insight from dopant-defect interplay in textured carbon anode materials. Energy. Storage. Mater. 2020, 28, 55-63.
42. Jin, Q.; Wang, K.; Feng, P.; Zhang, Z.; Cheng, S.; Jiang, K. Surface-dominated storage of heteroatoms-doping hard carbon for sodium-ion batteries. Energy. Storage. Mater. 2020, 27, 43-50.
43. Xie, F.; Niu, Y.; Zhang, Q.; et al. Screening heteroatom configurations for reversible sloping capacity promises high-power Na-ion batteries. Angew. Chem. Int. Ed. Engl. 2022, 61, e202116394.
44. Wu, S.; Peng, H.; Xu, J.; et al. Nitrogen/phosphorus co-doped ultramicropores hard carbon spheres for rapid sodium storage. Carbon 2024, 218, 118756.
45. Mehmood, A.; Ali, G.; Koyutürk, B.; Pampel, J.; Chung, K. Y.; Fellinger, T. Nanoporous nitrogen doped carbons with enhanced capacity for sodium ion battery anodes. Energy. Storage. Mater. 2020, 28, 101-11.
46. Tao, S.; Xu, W.; Zheng, J.; et al. Soybean roots-derived N, P Co-doped mesoporous hard carbon for boosting sodium and potassium-ion batteries. Carbon 2021, 178, 233-42.
47. Yan, J.; Li, H.; Wang, K.; et al. Ultrahigh phosphorus doping of carbon for high-rate sodium ion batteries anode. Adv. Energy. Mater. 2021, 11, 2003911.
48. Fan, M.; Lin, Z.; Zhang, P.; et al. Synergistic effect of nitrogen and sulfur dual-doping endows TiO2 with exceptional sodium storage performance. Adv. Energy. Mater. 2021, 11, 2003037.
49. Luo, S.; Yuan, T.; Soule, L.; et al. Enhanced ionic/electronic transport in nano-TiO2/sheared CNT composite electrode for Na+ insertion-based hybrid ion-capacitors. Adv. Funct. Mater. 2020, 30, 1908309.
50. Wang, C.; Zhang, J.; Wang, X.; Lin, C.; Zhao, X. S. Hollow rutile cuboid arrays grown on carbon fiber cloth as a flexible electrode for sodium-ion batteries. Adv. Funct. Mater. 2020, 30, 2002629.
51. Lv, D.; Wang, D.; Wang, N.; et al. Nitrogen and fluorine co-doped TiO2/carbon microspheres for advanced anodes in sodium-ion batteries: high volumetric capacity, superior power density and large areal capacity. J. Energy. Chem. 2022, 68, 104-12.
52. Wang, C.; Yao, Q.; Wang, M.; et al. Highly conductive hierarchical TiO2 micro-sheet enables thick electrodes in sodium storage. Adv. Funct. Mater. 2024, 34, 2301996.
53. Guan, S.; Fan, Q.; Shen, Z.; Zhao, Y.; Sun, Y.; Shi, Z. Heterojunction TiO2@TiOF2 nanosheets as superior anode materials for sodium-ion batteries. J. Mater. Chem. A. 2021, 9, 5720-9.
54. Xu, X.; Chen, B.; Hu, J.; et al. Heterostructured TiO2 spheres with tunable interiors and shells toward improved packing density and pseudocapacitive sodium storage. Adv. Mater. 2019, 31, e1904589.
55. Meng, W.; Dang, Z.; Li, D.; Jiang, L.; Fang, D. Interface and defect engineered titanium-base oxide heterostructures synchronizing high-rate and ultrastable sodium storage. Adv. Energy. Mater. 2022, 12, 2201531.
56. Zhao, Q.; Xia, Z.; Qian, T.; et al. PVP-assisted synthesis of ultrafine transition metal oxides encapsulated in nitrogen-doped carbon nanofibers as robust and flexible anodes for sodium-ion batteries. Carbon 2021, 174, 325-34.
57. Hou, T.; Liu, B.; Sun, X.; et al. Covalent coupling-stabilized transition-metal sulfide/carbon nanotube composites for lithium/sodium-ion batteries. ACS. Nano. 2021, 15, 6735-46.
58. Chen, Y.; Liu, H.; Guo, X.; et al. Bimetallic sulfide SnS2/FeS2 nanosheets as high-performance anode materials for sodium-ion batteries. ACS. Appl. Mater. Interfaces. 2021, 13, 39248-56.
59. Muhammad M, Liu Y, Sheng L, Haruna B, Hu X, Wen Z. Phase engineering of nickel-based sulfides toward robust sodium-ion batteries. J. Colloid. Interface. Sci. 2023, 646, 245-53.
60. Wang, X.; Zhang, X.; Chen, Y.; Dong, J.; Zhao, J. Optimizing electron spin-polarized states of MoSe2/Cr2Se3 heterojunction-embedded carbon nanospheres for superior sodium/potassium-ion battery performances. Small 2024, 20, e2312130.
61. Chen, H.; Tian, P.; Fu, L.; Wan, S.; Liu, Q. Hollow spheres of solid solution Fe7Ni3S11/CN as advanced anode materials for sodium ion batteries. Chem. Eng. J. 2022, 430, 132688.
62. Wang, Z.; Dong, K.; Wang, D.; et al. Constructing N-doped porous carbon confined FeSb alloy nanocomposite with Fe-N-C coordination as a universal anode for advanced Na/K-ion batteries. Chem. Eng. J. 2020, 384, 123327.
63. Ma, W.; Wang, J.; Gao, H.; et al. A mesoporous antimony-based nanocomposite for advanced sodium ion batteries. Energy. Storage. Mater. 2018, 13, 247-56.
64. Edison, E.; Sreejith, S.; Ren, H.; Lim, C. T.; Madhavi, S. Microstructurally engineered nanocrystalline Fe–Sn–Sb anodes: towards stable high energy density sodium-ion batteries. J. Mater. Chem. A. 2019, 7, 14145-52.
65. Chen, L.; He, X.; Chen, H.; Huang, S.; Wei, M. N-doped carbon encapsulating Bi nanoparticles derived from metal–organic frameworks for high-performance sodium-ion batteries. J. Mater. Chem. A. 2021, 9, 22048-55.
66. Gao, H.; Niu, J.; Zhang, C.; Peng, Z.; Zhang, Z. A dealloying synthetic strategy for nanoporous bismuth-antimony anodes for sodium ion batteries. ACS. Nano. 2018, 12, 3568-77.
67. Ma, W.; Yin, K.; Gao, H.; Niu, J.; Peng, Z.; Zhang, Z. Alloying boosting superior sodium storage performance in nanoporous tin-antimony alloy anode for sodium ion batteries. Nano. Energy. 2018, 54, 349-59.
68. Lei, S.; Qiu, M.; Hu, X.; et al. Heteroatomic phosphorus selenides molecules encapsulated in porous carbon as a highly reversible anode for sodium-ion batteries. Mater. Today. Nano. 2023, 22, 100344.
69. Xu, Z.; Wang, J.; Guo, Z.; et al. The role of hydrothermal carbonization in sustainable sodium-ion battery anodes. Adv. Energy. Mater. 2022, 12, 2200208.
70. Lu, Y.; Zhao, C.; Qi, X.; et al. Pre-oxidation-tuned microstructures of carbon anodes derived from pitch for enhancing Na storage performance. Adv. Energy. Mater. 2018, 8, 1800108.
71. Zhao, J.; He, X.; Lai, W.; et al. Catalytic defect-repairing using manganese ions for hard carbon anode with high-capacity and high-initial-coulombic-efficiency in sodium-ion batteries. Adv. Energy. Mater. 2023, 13, 2300444.
72. Wang, J.; Zhao, J.; He, X.; Qiao, Y.; Li, L.; Chou, S. Hard carbon derived from hazelnut shell with facile HCl treatment as high-initial-coulombic-efficiency anode for sodium ion batteries. Sustainable. Mater. Technol. 2022, 33, e00446.
73. Meng, Q.; Lu, Y.; Ding, F.; Zhang, Q.; Chen, L.; Hu, Y. Tuning the closed pore structure of hard carbons with the highest Na storage capacity. ACS. Energy. Lett. 2019, 4, 2608-12.
74. Kamiyama, A.; Kubota, K.; Igarashi, D.; et al. MgO-template synthesis of extremely high capacity hard carbon for Na-ion battery. Angew. Chem. Int. Ed. Engl. 2021, 60, 5114-20.
75. Li, Y.; Lu, Y.; Meng, Q.; et al. Regulating pore structure of hierarchical porous waste cork-derived hard carbon anode for enhanced Na storage performance. Adv. Energy. Mater. 2019, 9, 1902852.
76. Li, Q.; Liu, X.; Tao, Y.; et al. Sieving carbons promise practical anodes with extensible low-potential plateaus for sodium batteries. Natl. Sci. Rev. 2022, 9, nwac084.
77. Ma, L.; Gao, X.; Zhang, W.; et al. Ultrahigh rate capability and ultralong cycling stability of sodium-ion batteries enabled by wrinkled black titania nanosheets with abundant oxygen vacancies. Nano. Energy. 2018, 53, 91-6.
78. Han, M.; Zou, Z.; Liu, J.; et al. Pressure-induced defects and reduced size endow TiO2 with high capacity over 20 000 cycles and excellent fast-charging performance in sodium ion batteries. Small 2024, 20, e2312119.
79. Hwang, J.; Du, H.; Yun, B.; et al. Carbon-free TiO2 microspheres as anode materials for sodium ion batteries. ACS. Energy. Lett. 2019, 4, 494-501.
80. Yang, J.; Huang, M.; Xu, L.; Xia, X.; Peng, C. Self-assembled titanium-deficient undoped anatase TiO2 nanoflowers for ultralong-life and high-rate Li+/Na+ storage. Chem. Eng. J. 2022, 445, 136638.
81. Lan, K.; Liu, L.; Zhang, J. Y.; et al. Precisely designed mesoscopic titania for high-volumetric-density pseudocapacitance. J. Am. Chem. Soc. 2021, 143, 14097-105.
82. Xia, Q.; Liang, Y.; Lin, Z.; et al. Confining ultrathin 2D superlattices in mesoporous hollow spheres renders ultrafast and high-capacity Na-ion storage. Adv. Energy. Mater. 2020, 10, 2001033.
83. Liu, S.; Niu, K.; Chen, S.; et al. TiO2 bunchy hierarchical structure with effective enhancement in sodium storage behaviors. Carbon. Energy. 2022, 4, 645-53.
84. Yang, D.; Xu, B.; Zhao, Q.; Zhao, X. S. Three-dimensional nitrogen-doped holey graphene and transition metal oxide composites for sodium-ion batteries. J. Mater. Chem. A. 2019, 7, 363-71.
85. Khan, R.; Yan, W.; Ahmad, W.; et al. Role of moderate strain engineering in Nickel Sulfide anode for advanced sodium-ion batteries. J. Alloys. Compd. 2023, 963, 171196.
86. Li, R.; Dong, W.; Pan, J.; Huang, F. Micrometer-sized, dual-conductive MoO2/β-MoO3-x mosaics for high volumetric capacity Li/Na-ion batteries. Small. Methods. 2021, 5, e2100765.
87. Wang, B.; Li, F.; Wang, X.; Wang, G.; Wang, H.; Bai, J. Mn3O4 nanotubes encapsulated by porous graphene sheets with enhanced electrochemical properties for lithium/sodium-ion batteries. Chem. Eng. J. 2019, 364, 57-69.
88. Zhang, K.; Xiong, F.; Zhou, J.; Mai, L.; Zhang, L. Universal construction of ultrafine metal oxides coupled in N-enriched 3D carbon nanofibers for high-performance lithium/sodium storage. Nano. Energy. 2020, 67, 104222.
89. Xu, M.; Xia, Q.; Yue, J.; et al. Rambutan-like hybrid hollow spheres of carbon confined Co3O4 nanoparticles as advanced anode materials for sodium-ion batteries. Adv. Funct. Mater. 2019, 29, 1807377.
90. Zhao, Y.; Wang, F.; Wang, C.; et al. Encapsulating highly crystallized mesoporous Fe3O4 in hollow N-doped carbon nanospheres for high-capacity long-life sodium-ion batteries. Nano. Energy. 2019, 56, 426-33.
91. Cao, L.; Gao, X.; Zhang, B.; Ou, X.; Zhang, J.; Luo, W. B. Bimetallic sulfide Sb2S3@FeS2 hollow nanorods as high-performance anode materials for sodium-ion batteries. ACS. Nano. 2020, 14, 3610-20.
92. Liu, J.; Li, Y.; Chen, Z.; et al. Polyoxometalate cluster-incorporated high entropy oxide sub-1 nm nanowires. J. Am. Chem. Soc. 2022, 144, 23191-7.
93. Yang, H.; Chen, L. W.; He, F.; et al. Optimizing the void size of yolk-shell Bi@Void@C nanospheres for high-power-density sodium-ion batteries. Nano. Lett. 2020, 20, 758-67.
94. Fan, X.; Han, J.; Ding, Y.; et al. 3D nanowire arrayed Cu current collector toward homogeneous alloying anode deposition for enhanced sodium storage. Adv. Energy. Mater. 2019, 9, 1900673.
95. Dang, J.; Zhu, R.; Zhang, S.; et al. Bean pod-like SbSn/N-doped carbon fibers toward a binder free, free-standing, and high-performance anode for sodium-ion batteries. Small 2022, 18, e2107869.
96. Song, Z.; Wang, G.; Chen, Y.; Lu, Y.; Wen, Z. In situ three-dimensional cross-linked carbon nanotube-interspersed SnSb@CNF as freestanding anode for long-term cycling sodium-ion batteries. Chem. Eng. J. 2023, 463, 142289.
97. Kim, Y. H.; An, J. H.; Kim, S. Y.; et al. Enabling 100C fast-charging bulk Bi anodes for Na-ion batteries. Adv. Mater. 2022, 34, e2201446.
98. Eaves-Rathert, J.; Moyer-Vanderburgh, K.; Wolfe, K.; Zohair, M.; Pint, C. L. Leveraging impurities in recycled lead anodes for sodium-ion batteries. Energy. Storage. Mater. 2022, 53, 552-8.
99. Fang, H.; Gao, S.; Ren, M.; et al. Dual-function presodiation with sodium diphenyl ketone towards ultra-stable hard carbon anodes for sodium-ion batteries. Angew. Chem. Int. Ed. Engl. 2023, 62, e202214717.
100. Bai, P.; Han, X.; He, Y.; et al. Solid electrolyte interphase manipulation towards highly stable hard carbon anodes for sodium ion batteries. Energy. Storage. Mater. 2020, 25, 324-33.
101. Jin, Y.; Xu, Y.; Xiao, B.; et al. Stabilizing interfacial reactions for stable cycling of high-voltage sodium batteries. Adv. Funct. Mater. 2022, 32, 2204995.
102. Jin, Y.; Xu, Y.; Le, P. M. L.; et al. Highly reversible sodium ion batteries enabled by stable electrolyte-electrode interphases. ACS. Energy. Lett. 2020, 5, 3212-20.
103. Li, K.; Zhang, J.; Lin, D.; et al. Evolution of the electrochemical interface in sodium ion batteries with ether electrolytes. Nat. Commun. 2019, 10, 725.
104. Meng, W.; Dang, Z.; Li, D.; Jiang, L. Long-cycle-life sodium-ion battery fabrication via a unique chemical bonding interface mechanism. Adv. Mater. 2023, 35, e2301376.
105. Xu, Z.; Lim, K.; Park, K.; Yoon, G.; Seong, W. M.; Kang, K. Engineering solid electrolyte interphase for pseudocapacitive anatase TiO2 anodes in sodium-ion batteries. Adv. Funct. Mater. 2018, 28, 1802099.
106. Cha, G.; Mohajernia, S.; Nguyen, N. T.; et al. Li+ pre-insertion leads to formation of solid electrolyte interface on TiO2 nanotubes that enables high-performance anodes for sodium ion batteries. Adv. Energy. Mater. 2020, 10, 1903448.
107. Li, Q.; Cao, Z.; Cheng, H.; et al. Electrolyte boosting microdumbbell-structured alloy/metal oxide anode for fast-charging sodium-ion batteries. ACS. Mater. Lett. 2022, 4, 2469-79.
108. Yang, J.; Guo, X.; Gao, H.; et al. A high-performance alloy-based anode enabled by surface and interface engineering for wide-temperature sodium-ion batteries. Adv. Energy. Mater. 2023, 13, 2300351.
109. Chu, C.; Zhou, L.; Cheng, Y.; et al. Ultralow-concentration (0.1M) electrolyte for stable bulk alloy (Sn, Bi) anode in sodium-ion battery via regulating anions structure. Chem. Eng. J. 2024, 482, 148915.
110. Huang, J.; Guo, X.; Du, X.; et al. Nanostructures of solid electrolyte interphases and their consequences for microsized Sn anodes in sodium ion batteries. Energy. Environ. Sci. 2019, 12, 1550-7.
111. Wu, X.; Li, Z.; Feng, W.; et al. Insights into electrolyte-induced temporal and spatial evolution of an ultrafast-charging Bi-based anode for sodium-ion batteries. Energy. Storage. Mater. 2024, 66, 103219.
112. Zhao, B.; Han, J.; Liu, B.; Zhang, S. L.; Guan, B. Hierarchical metal–organic framework nanoarchitectures for catalysis. Chem. Synth. 2024, 4, 41.
113. Peng, Y.; Tan, Q.; Huang, H.; et al. Customization of functional MOFs by a modular design strategy for target applications. Chem. Synth. 2022, 2, 15.
114. Li, H.; Li, C.; Wang, Y.; et al. Selenium confined in ZIF-8 derived porous carbon@MWCNTs 3D networks: tailoring reaction kinetics for high performance lithium-selenium batteries. Chem. Synth. 2022, 2, 8.
115. Su, Y.; Yuan, G.; Hu, J.; et al. Recent progress in strategies for preparation of metal-organic frameworks and their hybrids with different dimensions. Chem. Synth. 2022, 3, 1.
116. Wang, R.; Zhao, J.; Fang, Q.; Qiu, S. Advancements and applications of three-dimensional covalent organic frameworks. Chem. Synth. 2024, 4, 29.
117. Li, X.; Geng, K.; Fu, S.; Jin, E. Molecular engineering toward large pore-sized covalent organic frameworks. Chem. Synth. 2024, 4, 15.
118. Yin, X.; Sarkar, S.; Shi, S.; et al. Recent progress in advanced organic electrode materials for sodium-ion batteries: synthesis, mechanisms, challenges and perspectives. Adv. Funct. Mater. 2020, 30, 1908445.
119. Lee, J.; Kim, Y.; Park, S.; et al. Sodium-coordinated polymeric phthalocyanines as stable high-capacity organic anodes for sodium-ion batteries. Energy. Environ. Mater. 2023, 6, e12468.
120. Liu, Y.; Yao, Z.; Vanaphuti, P.; et al. Stable fast-charging sodium-ion batteries achieved by a carbomethoxy-modified disodium organic material. Cell. Rep. Phys. Sci. 2023, 4, 101240.
Comments
Comments must be written in English. Spam, offensive content, impersonation, and private information will not be permitted. If any comment is reported and identified as inappropriate content by OAE staff, the comment will be removed without notice. If you have any queries or need any help, please contact us at support@oaepublish.com.