REFERENCES
1. Han B, Li Q, Jiang X, et al. Switchable tuning CO2 hydrogenation selectivity by encapsulation of the Rh nanoparticles while exposing single atoms. Small. 2022;18:e2204490.
2. He D, Wu S, Cao X, et al. Dynamic trap of Ni at elevated temperature for yielding high-efficiency methane dry reforming catalyst. Appl Catal B Environ Energy. 2024;346:123728.
3. Zhou W, Wang B, Tang L, et al. Photocatalytic dry reforming of methane enhanced by “dual-path” strategy with excellent low-temperature catalytic performance. Adv Funct Mater. 2023;33:2214068.
4. Xu Y, Yang Y, Wu M, et al. Review on using molybdenum carbides for the thermal catalysis of CO2 hydrogenation to produce high-value-added chemicals and fuels. Acta Phys Chim Sin. 2024;40:2304003.
5. Kawi S, Kathiraser Y, Ni J, Oemar U, Li Z, Saw ET. Progress in synthesis of highly active and stable nickel-based catalysts for carbon dioxide reforming of methane. ChemSusChem. 2015;8:3556-75.
6. Kathiraser Y, Oemar U, Saw ET, Li Z, Kawi S. Kinetic and mechanistic aspects for CO2 reforming of methane over Ni based catalysts. Chem Eng J. 2015;278:62-78.
7. Yentekakis IV, Panagiotopoulou P, Artemakis G. A review of recent efforts to promote dry reforming of methane (DRM) to syngas production via bimetallic catalyst formulations. Appl Catal B Environ. 2021;296:120210.
8. Wittich K, Krämer M, Bottke N, Schunk SA. Catalytic dry reforming of methane: insights from model systems. ChemCatChem. 2020;12:2130-47.
9. Wang Z, Wang M, Huan Y, et al. Defect and interface engineering for promoting electrocatalytic N-integrated CO2 co-reduction. Chin J Catal. 2024;57:1-17.
10. Li T, Chen F, Lang R, et al. Styrene hydroformylation with in situ hydrogen: regioselectivity control by coupling with the low-temperature water-gas shift reaction. Angew Chem Int Ed Engl. 2020;59:7430-4.
11. Chen F, Li T, Pan X, et al. Pd1/CeO2 single-atom catalyst for alkoxycarbonylation of aryl iodides. Sci China Mater. 2020;63:959-64. (in Chinese).
12. Zhang Y, Yang X, Yang X, et al. Tuning reactivity of Fischer-Tropsch synthesis by regulating TiOx overlayer over Ru/TiO2 nanocatalysts. Nat Commun. 2020;11:3185.
13. Rahmati M, Safdari MS, Fletcher TH, Argyle MD, Bartholomew CH. Chemical and thermal sintering of supported metals with emphasis on cobalt catalysts during fischer-tropsch synthesis. Chem Rev. 2020;120:4455-533.
14. Chu W, Wang LN, Chernavskii PA, Khodakov AY. Glow-discharge plasma-assisted design of cobalt catalysts for Fischer-Tropsch synthesis. Angew Chem Int Ed Engl. 2008;47:5052-5.
15. Zhang Q, Akri M, Yang Y, Qiao B. Atomically dispersed metals as potential coke-resistant catalysts for dry reforming of methane. Cell Rep Phys Sci. 2023;4:101310.
16. Cheng Q, Yao X, Ou L, et al. Highly efficient and stable methane dry reforming enabled by a single-site cationic Ni catalyst. J Am Chem Soc. 2023;145:25109-19.
17. Zhang X, Xu Y, Liu Y, et al. A novel Ni-MoCxOy interfacial catalyst for syngas production via the chemical looping dry reforming of methane. Chem. 2023;9:102-16.
18. Feng K, Zhang J, Li Z, et al. Spontaneous regeneration of active sites against catalyst deactivation. Appl Catal B Environ. 2024;344:123647.
19. Tang Y, Wei Y, Wang Z, et al. Synergy of single-atom Ni1 and Ru1 sites on CeO2 for dry reforming of CH4. J Am Chem Soc. 2019;141:7283-93.
20. Carrara C, Múnera J, Lombardo EA, Cornaglia LM. Kinetic and stability studies of Ru/La2O3 used in the dry reforming of methane. Top Catal. 2008;51:98-106.
21. Niu J, Wang Y, E. Liland S, et al. Unraveling enhanced activity, selectivity, and coke resistance of Pt-Ni bimetallic clusters in dry reforming. ACS Catal. 2021;11:2398-411.
22. Al-Fatesh AS, Fakeeha AH, Abasaeed AE. Effect of Pd on CH4 reforming with CO2 catalyzed by Ni over mixed Titian-Alumina support. Adv Mater Res. 2012;476-8:513-8.
23. Wang D, Littlewood P, Marks TJ, Stair PC, Weitz E. Coking can enhance product yields in the dry reforming of methane. ACS Catal. 2022;12:8352-62.
24. Jang WJ, Shim JO, Kim HM, Yoo SY, Roh HS. A review on dry reforming of methane in aspect of catalytic properties. Catal Today. 2019;324:15-26.
25. Pakhare D, Spivey J. A review of dry (CO2) reforming of methane over noble metal catalysts. Chem Soc Rev. 2014;43:7813-37.
26. Golunski SE. Final analysis: Why use platinum in catalytic converters? Platin Met Rev. 2007;51:162.
27. Li H, Hao C, Tian J, Wang S, Zhao C. Ultra-durable Ni-Ir/MgAl2O4 catalysts for dry reforming of methane enabled by dynamic balance between carbon deposition and elimination. Chem Catal. 2022;2:1748-63.
28. Huang Y, Li X, Zhang Q, Vinokurov VA, Huang W. Enhanced carbon tolerance of hydrotalcite-derived Ni-Ir/Mg(Al)O catalysts in dry reforming of methane under elevated pressures. Fuel Process Technol. 2022;237:107446.
29. Zhou R, Sun J, Zhang J, et al. Photo-thermo catalytic dry reforming of methane over Ni-Ir/SiO2 catalyst. Sci Sin Chim. 2021;51:1539-48.
30. Nikolaraki E, Goula G, Panagiotopoulou P, et al. Support induced effects on the Ir nanoparticles activity, selectivity and stability performance under CO2 reforming of methane. Nanomaterials. 2021;11:2880.
31. Kim E, Shin J, Bak J, et al. Stabilizing role of Mo in TiO2-MoOx supported Ir catalyst toward oxygen evolution reaction. Appl Catal B Environ. 2021;280:119433.
32. Maina SCP, Ballarini AD, Vilella JI, de Miguel SR. Study of the performance and stability in the dry reforming of methane of doped alumina supported iridium catalysts. Catal Today. 2020;344:129-42.
33. Jia A, Zhang Y, Song T, et al. The effects of TiO2 crystal-plane-dependent Ir-TiOx interactions on the selective hydrogenation of crotonaldehyde over Ir/TiO2 catalysts. Chin J Catal. 2021;42:1742-54.
34. Hou CC, Zou L, Sun L, et al. Single-atom iron catalysts on overhang-eave carbon cages for high-performance oxygen reduction reaction. Angew Chem Int Ed Engl. 2020;59:7384-9.
35. Lang R, Du X, Huang Y, et al. Single-atom catalysts based on the metal-oxide interaction. Chem Rev. 2020;120:11986-2043.
36. Li L, Chang X, Lin X, Zhao ZJ, Gong J. Theoretical insights into single-atom catalysts. Chem Soc Rev. 2020;49:8156-78.
37. Wang Y, Su H, He Y, et al. Advanced electrocatalysts with single-metal-atom active sites. Chem Rev. 2020;120:12217-314.
38. Kim JH, Shin D, Kim J, et al. Reversible ligand exchange in atomically dispersed catalysts for modulating the activity and selectivity of the oxygen reduction reaction. Angew Chem Int Ed Engl. 2021;60:20528-34.
39. Jeong H, Kwon O, Kim B, et al. Highly durable metal ensemble catalysts with full dispersion for automotive applications beyond single-atom catalysts. Nat Catal. 2020;3:368-75.
40. Zhu R, Kang L, Li L, et al. Photo-thermo catalytic oxidation of C3H8 and C3H6 over the WO3-TiO2 supported Pt single-atom catalyst. Acta Physico Chimica Sinica. 2024;40:2303003.
41. Zhou Y, Wei F, Qi H, et al. Peripheral-nitrogen effects on the Ru1 centre for highly efficient propane dehydrogenation. Nat Catal. 2022;5:1145-56.
42. Han B, Li T, Zhang J, et al. A highly active Rh1/CeO2 single-atom catalyst for low-temperature CO oxidation. Chem Commun. 2020;56:4870-3.
43. Akri M, El Kasmi A, Batiot-dupeyrat C, Qiao B. Highly active and carbon-resistant nickel single-atom catalysts for methane dry reforming. Catalysts. 2020;10:630.
44. Akri M, Zhao S, Li X, et al. Atomically dispersed nickel as coke-resistant active sites for methane dry reforming. Nat Commun. 2019;10:5181.
45. Yang J, Zhang J, Jiang Q, et al. Highly active and stable Ir nanoclusters derived from Ir1/MgAl2O4 single-atom catalysts. J Chem Phys. 2021;154:131105.
46. Bergeret G, Gallezot P. 3.1.2 Particle size and dispersion measurements. In: Ertl G, Knözinger H, Schüth F, Weitkamp J, editors. Handbook of heterogeneous catalysis. Wiley; 2008. pp. 738-65.
47. Peng M, Dong C, Gao R, Xiao D, Liu H, Ma D. Fully exposed cluster catalyst (FECC): toward rich surface sites and full atom utilization efficiency. ACS Cent Sci. 2021;7:262-73.
48. Yang XF, Wang A, Qiao B, Li J, Liu J, Zhang T. Single-atom catalysts: a new frontier in heterogeneous catalysis. Acc Chem Res. 2013;46:1740-8.
49. Lu Y, Wang J, Yu L, et al. Identification of the active complex for CO oxidation over single-atom Ir-on-MgAl2O4 catalysts. Nat Catal. 2019;2:149-56.
50. Jin R, Peng M, Li A, et al. Low temperature oxidation of ethane to oxygenates by oxygen over iridium-cluster catalysts. J Am Chem Soc. 2019;141:18921-5.
51. Zhu Q, Zhou H, Wang L, et al. Enhanced CO2 utilization in dry reforming of methane achieved through nickel-mediated hydrogen spillover in zeolite crystals. Nat Catal. 2022;5:1030-7.
52. Zhang Y, Zhang Z, Yang X, et al. Tuning selectivity of CO2 hydrogenation by modulating the strong metal-support interaction over Ir/TiO2 catalysts. Green Chem. 2020;22:6855-61.
54. Zuo Z, Liu S, Wang Z, et al. Dry reforming of methane on single-site Ni/MgO catalysts: importance of site confinement. ACS Catal. 2018;8:9821-35.
55. Gangarajula Y, Hong F, Li Q, et al. Operando induced strong metal-support interaction of Rh/CeO2 catalyst in dry reforming of methane. Appl Catal B Environ. 2024;343:123503.