REFERENCES
1. Song, S.; Yang, K.; Zhang, P.; et al. Silicalite-1 stabilizes Zn-hydride species for efficient propane dehydrogenation. ACS. Catal. 2022, 12, 5997-6006.
2. Hou, W.; Lin, K.; Zhang, X.; et al. Highly stable and selective Pt/TS-1 catalysts for the efficient nonoxidative dehydrogenation of propane. Chem. Eng. J. 2023, 474, 145648.
3. Festa, G.; Contaldo, P.; Martino, M.; Meloni, E.; Palma, V. Modeling the selectivity of hydrotalcite-based catalyst in the propane dehydrogenation reaction. Ind. Eng. Chem. Res. 2023, 62, 16622-37.
4. Phadke, N. M.; Mansoor, E.; Bondil, M.; Head-Gordon, M.; Bell, A. T. Mechanism and kinetics of propane dehydrogenation and cracking over Ga/H-MFI prepared via vapor-phase exchange of H-MFI with GaCl3. J. Am. Chem. Soc. 2019, 141, 1614-27.
5. Nakaya, Y.; Hirayama, J.; Yamazoe, S.; Shimizu, K. I.; Furukawa, S. Single-atom Pt in intermetallics as an ultrastable and selective catalyst for propane dehydrogenation. Nat. Commun. 2020, 11, 2838.
6. Ma, Y.; Chen, X.; Guan, Y.; et al. Skeleton-Sn anchoring isolated Pt site to confine subnanometric clusters within *BEA topology. J. Catal. 2021, 397, 44-57.
7. Shi, L.; Deng, G. M.; Li, W. C.; et al. Al2O3 nanosheets rich in pentacoordinate Al3+ ions stabilize Pt-Sn clusters for propane dehydrogenation. Angew. Chem. Int. Ed. Engl. 2015, 54, 13994-8.
8. Ma, Y.; Song, S.; Liu, C.; et al. Germanium-enriched double-four-membered-ring units inducing zeolite-confined subnanometric Pt clusters for efficient propane dehydrogenation. Nat. Catal. 2023, 6, 506-18.
9. Wei, S.; Dai, H.; Long, J.; et al. Nonoxidative propane dehydrogenation by isolated Co2+ in BEA zeolite: dealumination-determined key steps of propane C–H activation and propylene desorption. Chem. Eng. J. 2023, 455, 140726.
10. Wan, H.; Qian, L.; Gong, N.; et al. Size-dependent structures and catalytic properties of supported bimetallic PtSn catalysts for propane dehydrogenation reaction. ACS. Catal. 2023, 13, 7383-94.
11. Wang, P.; Senftle, T. P. Modeling phase formation on catalyst surfaces: coke formation and suppression in hydrocarbon environments. AIChE. J. 2021, 67, e17454.
12. Zhang, Y.; Aly, M. Effect of CO2 on activity and coke formation over gallium-based catalysts for propane dehydrogenation. Appl. Catal. A. Gen. 2022, 643, 118795.
13. Sun, M.; Hu, Z.; Wang, H.; Suo, Y.; Yuan, Z. Design strategies of stable catalysts for propane dehydrogenation to propylene. ACS. Catal. 2023, 13, 4719-41.
14. Chen, S.; Chang, X.; Sun, G.; et al. Propane dehydrogenation: catalyst development, new chemistry, and emerging technologies. Chem. Soc. Rev. 2021, 50, 3315-54.
15. Xiao, L.; Shan, Y.; Sui, Z.; et al. Beyond the reverse Horiuti–Polanyi mechanism in propane dehydrogenation over Pt catalysts. ACS. Catal. 2020, 10, 14887-902.
16. Xiong, H.; Lin, S.; Goetze, J.; et al. Thermally stable and regenerable platinum–tin clusters for propane dehydrogenation prepared by atom trapping on ceria. Angew. Chem. 2017, 129, 9114-9.
17. Zhang, W.; Wang, H.; Jiang, J.; et al. Size dependence of Pt catalysts for propane dehydrogenation: from atomically dispersed to nanoparticles. ACS. Catal. 2020, 10, 12932-42.
18. Gao, X.; Yao, Z.; Li, W.; et al. Calcium-modified PtSn/Al2O3 catalyst for propane dehydrogenation with high activity and stability. ChemCatChem 2023, 15, e202201691.
19. Yu, Q.; Yu, T.; Chen, H.; Fang, G.; Pan, X.; Bao, X. The effect of Al3+ coordination structure on the propane dehydrogenation activity of Pt/Ga/Al2O3 catalysts. J. Energy. Chem. 2020, 41, 93-9.
20. Kwak, J. H.; Hu, J.; Mei, D.; et al. Coordinatively unsaturated Al3+ centers as binding sites for active catalyst phases of platinum on gamma-Al2O3. Science 2009, 325, 1670-3.
21. Li, X.; Li, J.; Yuan, M.; et al. Effect of chlorine on the performance of Cr-K/γ-Al2O3 catalyst for n-hexane dehydrogenation. Appl. Catal. A. Gen. 2023, 664, 119322.
22. Sun, G.; Zhao, Z. J.; Li, L.; et al. Metastable gallium hydride mediates propane dehydrogenation on H2 co-feeding. Nat. Chem. 2024, 16, 575-83.
23. Wang, Z.; Chen, Y.; Mao, S.; et al. Chemical insight into the structure and formation of coke on PtSn alloy during propane dehydrogenation. Adv. Sustain. Syst. 2020, 4, 2000092.
24. Zhao, Z. J.; Wu, T.; Xiong, C.; et al. Hydroxyl-mediated non-oxidative propane dehydrogenation over VOx/γ-Al2O3 catalysts with improved stability. Angew. Chem. Int. Ed. Engl. 2018, 57, 6791-5.
25. Sun, G.; Zhao, Z. J.; Mu, R.; et al. Breaking the scaling relationship via thermally stable Pt/Cu single atom alloys for catalytic dehydrogenation. Nat. Commun. 2018, 9, 4454.
26. Biloen, P. Catalytic dehydrogenation of propane to propene over platinum and platinum-gold alloys. J. Catal. 1977, 50, 77-86.
27. Sattler, J. J.; Ruiz-Martinez, J.; Santillan-Jimenez, E.; Weckhuysen, B. M. Catalytic dehydrogenation of light alkanes on metals and metal oxides. Chem. Rev. 2014, 114, 10613-53.
28. Yuan, Y.; Brady, C.; Lobo, R. F.; Xu, B. Understanding the correlation between Ga speciation and propane dehydrogenation activity on Ga/H-ZSM-5 catalysts. ACS. Catal. 2021, 11, 10647-59.
29. Phadke, N. M.; Mansoor, E.; Head-gordon, M.; Bell, A. T. Mechanism and kinetics of light alkane dehydrogenation and cracking over isolated Ga species in Ga/H-MFI. ACS. Catal. 2021, 11, 2062-75.
30. Li, M.; Yin, W.; Pan, J.; et al. Hydrogen spillover as a promising strategy for boosting heterogeneous catalysis and hydrogen storage. Chem. Eng. J. 2023, 471, 144691.
31. Niu, X.; Zhao, R.; Han, Y.; Zhang, X.; Wang, Q. Highly dispersed platinum clusters anchored on hollow ZSM-5 zeolite for deep hydrogenation of polycyclic aromatic hydrocarbons. Fuel 2022, 326, 125021.
32. Wang, G.; Li, C.; Shan, H. Catalytic dehydrogenation of isobutane over a Ga2O3/ZnO interface: reaction routes and mechanism. Catal. Sci. Technol. 2016, 6, 3128-36.
33. Dewangan, N.; Ashok, J.; Sethia, M.; et al. Cobalt-based catalyst supported on different morphologies of alumina for non-oxidative propane dehydrogenation: effect of metal support interaction and lewis acidic sites. ChemCatChem 2019, 11, 4923-34.
34. Soma, Y. Infrared spectra of ethylene adsorbed on transition metals at low temperatures and hydrogenation of the adsorbed species. J. Catal. 1979, 59, 239-47.
35. Ko, M. K.; Frei, H. Millisecond FT-IR spectroscopy of surface intermediates of C2H4 hydrogenation over Pt/Al2O3 catalyst under reaction conditions. J. Phys. Chem. B. 2004, 108, 1805-8.
36. Arena, F.; Dario, R.; Parmaliana, A. A characterization study of the surface acidity of solid catalysts by temperature programmed methods. Appl. Catal. A. 1998, 170, 127-37.
37. Buzzoni, R.; Bordiga, S.; Ricchiardi, G.; Lamberti, C.; Zecchina, A.; Bellussi, G. Interaction of pyridine with acidic (H-ZSM5, H-β, H-MORD zeolites) and superacidic (H-nafion membrane) systems: an IR investigation. Langmuir 1996, 12, 930-40.
38. Cholewinski, M. C.; Dixit, M.; Mpourmpakis, G. Computational study of methane activation on γ-Al2O3. ACS. Omega. 2018, 3, 18242-50.
39. Dixit, M.; Kostetskyy, P.; Mpourmpakis, G. Structure–activity relationships in alkane dehydrogenation on γ-Al2O3: site-dependent reactions. ACS. Catal. 2018, 8, 11570-8.
40. Otroshchenko, T.; Sokolov, S.; Stoyanova, M.; et al. ZrO2-based alternatives to conventional propane dehydrogenation catalysts: active sites, design, and performance. Angew. Chem. Int. Ed. Engl. 2015, 54, 15880-3.
41. Li, C.; Guo, X.; Shang, Q.; et al. Defective TiO2 for propane dehydrogenation. Ind. Eng. Chem. Res. 2020, 59, 4377-87.
42. Wang, P.; Xu, Z.; Wang, T.; Yue, Y.; Bao, X.; Zhu, H. Unmodified bulk alumina as an efficient catalyst for propane dehydrogenation. Catal. Sci. Technol. 2020, 10, 3537-41.
43. Leclerc, H.; Vimont, A.; Lavalley, J. C.; et al. Infrared study of the influence of reducible iron(III) metal sites on the adsorption of CO, CO2, propane, propene and propyne in the mesoporous metal-organic framework MIL-100. Phys. Chem. Chem. Phys. 2011, 13, 11748-56.
44. Čapek, L.; Novoveská, K.; Sobalík, Z.; Wichterlová, B.; Cider, L.; Jobson, E. Cu-ZSM-5 zeolite highly active in reduction of NO with decane under water vapor presence. Appl. Catal. B. Environ. 2005, 60, 201-10.
45. Hadjiivanov, K. Chapter two - Identification and characterization of surface hydroxyl groups by infrared spectroscopy. Adv. Catal. 2014, 57, 99-318.
46. Vazhnova, T.; Rigby, S. P.; Lukyanov, D. B. Benzene alkylation with ethane in ethylbenzene over a PtH-MFI catalyst: kinetic and IR investigation of the catalyst deactivation. J. Catal. 2013, 301, 125-33.
47. Madeira, F. F.; Vezin, H.; Gnep, N. S.; Magnoux, P.; Maury, S.; Cadran, N. Radical species detection and their nature evolution with catalyst deactivation in the ethanol-to-hydrocarbon reaction over HZSM-5 zeolite. ACS. Catal. 2011, 1, 417-24.
48. Song, C.; Liu, K.; Zhang, D.; et al. Effect of cofeeding n-butane with methanol on aromatization performance and coke formation over a Zn loaded ZSM-5/ZSM-11 zeolite. Appl. Catal. A. Gen. 2014, 470, 15-23.
49. Roy, S.; Bakhmutsky, K.; Mahmoud, E.; Lobo, R. F.; Gorte, R. J. Probing lewis acid sites in Sn-beta zeolite. ACS. Catal. 2013, 3, 573-80.
50. Zhu, Y.; An, Z.; Song, H.; Xiang, X.; Yan, W.; He, J. Lattice-confined Sn (IV/II) stabilizing raft-like Pt clusters: high selectivity and durability in propane dehydrogenation. ACS. Catal. 2017, 7, 6973-8.
51. Wang, F.; Xiao, W.; Gao, L.; Xiao, G. Enhanced performance of glycerol to aromatics over Sn-containing HZSM-5 zeolites. RSC. Adv. 2016, 6, 42984-93.
52. Karge, H.; Nießen, W.; Bludau, H. In-situ FTIR measurements of diffusion in coking zeolite catalysts. Appl. Catal. A. Gen. 1996, 146, 339-49.
53. Wong, K. S.; Vazhnova, T.; Rigby, S. P.; Lukyanov, D. B. Temperature effects in benzene alkylation with ethane into ethylbenzene over a PtH-MFI bifunctional catalyst. Appl. Catal. A. Gen. 2013, 454, 137-44.
54. van den Brand J, Blajiev O, Beentjes PC, Terryn H, de Wit JH. Interaction of ester functional groups with aluminum oxide surfaces studied using infrared reflection absorption spectroscopy. Langmuir 2004, 20, 6318-26.
55. Zaki, M. I.; Hasan, M. A.; Al-sagheer, F. A.; Pasupulety, L. Surface chemistry of acetone on metal oxides: IR observation of acetone adsorption and consequent surface reactions on silica−alumina versus silica and alumina. Langmuir 2000, 16, 430-6.
56. Airaksinen, S.; Banares, M.; Krause, A. In situ characterisation of carbon-containing species formed on chromia/alumina during propane dehydrogenation. J. Catal. 2005, 230, 507-13.
57. Finocchio, E.; Busca, G.; Lorenzelli, V.; Willey, R. The activation of hydrocarbon CH bonds over transition metal oxide catalysts: a FTIR study of hydrocarbon catalytic combustion over MgCr2O4. J. Catal. 1995, 151, 204-15.
58. Deng, X.; Qin, B.; Liu, R.; et al. Zeolite-encaged isolated platinum ions enable heterolytic dihydrogen activation and selective hydrogenations. J. Am. Chem. Soc. 2021, 143, 20898-906.
59. Pei, Y.; Qi, Z.; Goh, T. W.; et al. Intermetallic structures with atomic precision for selective hydrogenation of nitroarenes. J. Catal. 2017, 356, 307-14.
60. Vaarkamp, M.; Miller, J. T.; Modica, F. S.; Koningsberger, D. C. On the relation between particle morphology, structure of the metal-support interface, and catalytic properties of Pt/γ-Al2O3. J. Catal. 1996, 163, 294-305.
61. Bazin, P.; Saur, O.; Lavalley, J. C.; Daturi, M.; Blanchard, G. FT-IR study of CO adsorption on Pt/CeO2: characterisation and structural rearrangement of small Pt particles. Phys. Chem. Chem. Phys. 2005, 7, 187.
62. Liu, L.; Lopez-haro, M.; Lopes, C. W.; et al. Structural modulation and direct measurement of subnanometric bimetallic PtSn clusters confined in zeolites. Nat. Catal. 2020, 3, 628-38.
63. Han, L.; Meng, Q.; Wang, D.; et al. Interrogation of bimetallic particle oxidation in three dimensions at the nanoscale. Nat. Commun. 2016, 7, 13335.
64. Kim, T.; Kim, J.; Song, H. C.; et al. Catalytic synergy on PtNi bimetal catalysts driven by interfacial intermediate structures. ACS. Catal. 2020, 10, 10459-67.
65. Wang, C. M.; Schreiber, D. K.; Olszta, M. J.; Baer, D. R.; Bruemmer, S. M. Direct in Situ TEM observation of modification of oxidation by the injected vacancies for Ni-4Al alloy using a microfabricated nanopost. ACS. Appl. Mater. Interfaces. 2015, 7, 17272-7.
66. Allian, A. D.; Takanabe, K.; Fujdala, K. L.; et al. Chemisorption of CO and mechanism of CO oxidation on supported platinum nanoclusters. J. Am. Chem. Soc. 2011, 133, 4498-517.