REFERENCES

1. Doherty CJ, Kay SA. Circadian surprise - it’s not all about transcription. Science 2012;338:338-40.

2. Hammond C, Conrad S, Hermans I. Oxidative methane upgrading. ChemSusChem 2012;5:1668-86.

3. Qiu X, Wong N, Tin K, Zhu Q. Review low temperature catalysts for oxidative coupling of methane. J Chem Technol Biotechnol 1996;65:303-8.

4. Thybaut J, Marin G, Mirodatos C, et al. A novel technology for natural gas conversion by means of integrated oxidative coupling and dry reforming of methane. Chem Ing Tech 2014;86:1855-70.

5. Aljama H, Nørskov JK, Abild-pedersen F. Tuning methane activation chemistry on alkaline earth metal oxides by doping. J Phys Chem C 2018;122:22544-8.

6. Zhou X, Pang Y, Liu Z, et al. Active oxygen center in oxidative coupling of methane on La2O3 catalyst. J Energy Chem 2021;60:649-59.

7. Si J, Sun W, Zhao G, Lu Y. Support oxide tuning of MnOx-Na2WO4 catalysts enables low-temperature light-off of OCM. Fuel 2022;311:122539.

8. Hiyoshi N, Ikeda T. Oxidative coupling of methane over alkali chloride–Mn–Na2WO4/SiO2 catalysts: promoting effect of molten alkali chloride. Fuel Process Technol 2015;133:29-34.

9. Lim S, Choi J, Jin Suh D, Lee U, Song KH, Ha J. Low-temperature oxidative coupling of methane using alkaline earth metal oxide-supported perovskites. Catal Today 2020;352:127-33.

10. Roger A, Petit C, Kiennemann A. Effect of metallo-organic precursors on the synthesis of Sm–Sn pyrochlore catalysts: application to the oxidative coupling of methane. J Catal 1997;167:447-59.

11. Murthy PR, Liu Y, Wu G, Diao Y, Shi C. Oxidative coupling of methane: perspective for high-value C2 chemicals. Crystals 2021;11:1011.

12. Mi J, Chen J, Chen X, Liu X, Li J. Recent status and developments of vacancies modulation in the ABO3 perovskites for catalytic applications. Chemistry 2023;29:e202202713.

13. Deng J, Chen P, Xia S, et al. Advances in oxidative coupling of methane. Atmosphere 2023;14:1538.

14. Fisher JG, Rout D, Moon K, Kang SL. High-temperature X-ray diffraction and Raman spectroscopy study of (K0.5Na0.5)NbO3 ceramics sintered in oxidizing and reducing atmospheres. Mater Chem Phys 2010;120:263-71.

15. Kapusta B, Guillopé M. Molecular dynamics study of the perovskite MgSiO3 at high temperature: structural, elastic and thermodynamical properties. Phys Earth Planet In 1993;75:205-24.

16. Gao L, Liang K, Liu Z, Chen H, Zhang J. Structure dependence of dielectric properties in Ca-doped bismuth magnesium niobate pyrochlores. J Alloys Compd 2022;922:165859.

17. Muñoz HJ, Korili SA, Gil A. Progress and recent strategies in the synthesis and catalytic applications of perovskites based on lanthanum and aluminum. Materials 2022;15:3288.

18. Renju UA, Prabhakar Rao P, Vaisakhan Thampi DS. Influence of phase transition from order to disorder and Philip’s ionicity on the thermal expansion coefficient of pyrochlore type compositions with a multivalent environment. New J Chem 2017;41:245-55.

19. Behara S, Poonawala T, Thomas T. Crystal structure classification in ABO3 perovskites via machine learning. Comput Mater Sci 2021;188:110191.

20. Liu H, Cheng J, Dong H, et al. Screening stable and metastable ABO3 perovskites using machine learning and the materials project. Comput Mater Sci 2020;177:109614.

21. Jerez A, López ML, García-Martín S, Veiga ML, Pico C. Defect pyrochlore structure A2B2X6: a general approach to the coordination polyhedra around the metal ions. J Mater Sci 1991;26:5163-6.

22. Jerpoth SS, Iannello J, Aboagye EA, Yenkie KM. Computer-aided synthesis of cost-effective perovskite crystals: an emerging alternative to silicon solar cells. Clean Technol Envir 2020;22:1187-98.

23. Subramanian M, Aravamudan G, Subba Rao G. Oxide pyrochlores - A review. Prog Solid State Ch 1983;15:55-143.

24. Shamblin J, Tracy CL, Ewing RC, et al. Structural response of titanate pyrochlores to swift heavy ion irradiation. Acta Mater 2016;117:207-15.

25. Petit C, Teymouri M, Roger A, Rehspringer J, Hilaire L, Kiennemann A. Preparation and characterization of ASnO3 (A=Ca, Sr or Ba) tin compounds for methane oxidative coupling. Stud Surf Sci Catal 1995;91:607-16.

26. Park S, Hwang HJ, Moon J. Catalytic combustion of methane over rare earth stannate pyrochlore. Catal Lett 2003;87:219-23.

27. Yang W, Yan Q, Fu X. Oxidative coupling of methane over Sr−Ti, Sr−Sn perovskites and corresponding layered perovskites. React Kinet Catal Lett 1995;54:21-7.

28. Cheng J, Wang H, Hao Z, Wang S. Catalytic combustion of methane over cobalt doped lanthanum stannate pyrochlore oxide. Catal Commun 2008;9:690-5.

29. Lumpkin GR, Aughterson RD. Perspectives on pyrochlores, defect fluorites, and related compounds: building blocks for chemical diversity and functionality. Front Chem 2021;9:778140.

30. Beyerlein R, Horowitz H, Longo J, Leonowicz M, Jorgensen J, Rotella F. Neutron diffraction investigation of ordered oxygen vacancies in the defect pyrochlores, Pb2Ru2O6.5 and PbT1Nb2O6.5. J Solid State Chem 1984;51:253-65.

31. Moncada J, Adams WR, Thakur R, Julin M, Carrero CA. Developing a Raman spectrokinetic approach to gain insights into the structure–reactivity relationship of supported metal oxide catalysts. ACS Catal 2018;8:8976-86.

32. Alammar T, Hamm I, Grasmik V, Wark M, Mudring AV. Microwave-assisted synthesis of perovskite SrSnO3 nanocrystals in ionic liquids for photocatalytic applications. Inorg Chem 2017;56:6920-32.

33. Rajakumaran R, Balamurugan K, Chen SM, Sukanya R. Facile synthesis of neodymium stannate nanoparticles an effective electrocatalyst for the selective detection of dimetridazole in biological samples. Anal Chim Acta 2022;1190:339234.

34. Cortés-adasme E, Castillo R, Conejeros S, Vega M, Llanos J. Behavior of Eu ions in SrSnO3: optical properties, XPS experiments and DFT calculations. J Alloys Compd 2019;771:162-8.

35. Wu T, Wei Y, Xiong J, et al. Atomically dispersed SrOx species on exposed {2 2 2} facets of pyrochlore La2Zr2O7 nanocrystals for boosting low-temperature oxidative coupling of methane. Fuel 2023;333:126479.

36. Kim I, Lee G, Na HB, Ha J, Jung JC. Selective oxygen species for the oxidative coupling of methane. Mol Catal 2017;435:13-23.

37. Thum L, Rudolph M, Schomäcker R, et al. Oxygen activation in oxidative coupling of methane on calcium oxide. J Phys Chem C 2019;123:8018-26.

38. Jiang S, Ding W, Zhao K, et al. Enhanced chemical looping oxidative coupling of methane by Na-doped LaMnO3 redox catalysts. Fuel 2021;299:120932.

39. Yan L, Zhang J, Gao X, et al. Oxidative coupling of methane over Mo-Sn catalysts. Chem Commun 2021;57:13297-300.

40. Zhao M, Ke S, Wu H, Xia W, Wan H. Flower-like Sr-La2O3 microspheres with hierarchically porous structures for oxidative coupling of methane. Ind Eng Chem Res 2019;58:22847-56.

41. Papa F, Luminita P, Osiceanu P, Birjega R, Akane M, Balint I. Acid–base properties of the active sites responsible for C2+ and CO2 formation over MO–Sm2O3 (M=Zn, Mg, Ca and Sr) mixed oxides in OCM reaction. J Mol Catal A Chem 2011;346:46-54.

42. Gambo Y, Jalil A, Triwahyono S, Abdulrasheed A. Recent advances and future prospect in catalysts for oxidative coupling of methane to ethylene: a review. J Ind Eng Chem 2018;59:218-29.

43. Gu S, Oh H, Choi J, et al. Effects of metal or metal oxide additives on oxidative coupling of methane using Na2WO4/SiO2 catalysts: reducibility of metal additives to manipulate the catalytic activity. Appl Catal A Gen 2018;562:114-9.

44. Yoon S, Lim S, Choi JW, Suh DJ, Song KH, Ha JM. Study on the unsteady state oxidative coupling of methane: effects of oxygen species from O2, surface lattice oxygen, and CO2 on the C2+ selectivity. RSC Adv 2020;10:35889-97.

45. Zanina A, Kondratenko VA, Lund H, et al. The role of adsorbed and lattice oxygen species in product formation in the oxidative coupling of methane over M2WO4/SiO2 (M = Na, K, Rb, Cs). ACS Catal 2022;12:15361-72.

46. Tang L, Yamaguchi D, Wong L, Burke N, Chiang K. The promoting effect of ceria on Li/MgO catalysts for the oxidative coupling of methane. Catal Today 2011;178:172-80.

47. Pang Y, Zhou X, Vovk EI, et al. Understanding lanthanum oxide surface structure by DFT simulation of oxygen 1s calibrated binding energy in XPS after in situ treatment. Appl Surf Sci 2021;548:149214.

48. Doornkamp C, Clement M, Ponec V. The isotopic exchange reaction of oxygen on metal oxides. J Catal 1999;182:390-9.

49. Martin D, Duprez D. Mobility of surface species on oxides. 1. Isotopic exchange of 18O2 with 16O of SiO2, Al2O3, ZrO2, MgO, CeO2, and CeO2-Al2O3. Activation by noble metals. Correlation with oxide basicity. J Phys Chem 1996;100:9429-38.

50. Chandra S, Ravichandran K, George G, Arun T, Rajkumar PV. Influence of Fe and Fe+F doping on the properties of sprayed SnO2 thin films. J Mater Sci Mater Electron 2016;27:9558-64.

51. Lopes LB, Vieira LH, Assaf JM, Assaf EM. Effect of Mg substitution on LaTi1-x MgxO3+δ catalysts for improving the C2 selectivity of the oxidative coupling of methane. Catal Sci Technol 2021;11:283-96.

52. Gao W, Zhou T, Wang Q. Controlled synthesis of MgO with diverse basic sites and its CO2 capture mechanism under different adsorption conditions. Chem Eng J 2018;336:710-20.

53. Davydov A, Shepotko M, Budneva A. Basic sites on the oxide surfaces: their effect on the catalytic methane coupling. Catal Today 1995;24:225-30.

54. Liu C, Li Y, Li Y, et al. First principle calculation of helium in La2Zr2O7: effects on structural, electronic properties and radiation tolerance. J Nucl Mater 2018;500:72-80.

55. Srivastava AM, Brik MG, Beers WW, Cohen WE. Luminescence of Mn4+ in the orthorhombic perovskites, AZrO3 (A=Ca, Sr). Opt Mater 2021;114:110906.

56. Antonio J, Muñoz H, Rosas-huerta J, et al. Effects of the phase transition on the structural, mechanical, electronic and vibrational properties of the CaSnO3 perovskite: study under hydrostatic pressure. J Phys Chem Solids 2022;163:110594.

57. Wang H, Huang H, Bashir K, Li C. Isolated Sn on mesoporous silica as a highly stable and selective catalyst for the propane dehydrogenation. Appl Catal A Gen 2020;590:117291.

58. Salmones J, Wang J, Galicia JA, Aguilar-rios G. H2 reduction behaviors and catalytic performance of bimetallic tin-modified platinum catalysts for propane dehydrogenation. J Mol Catal A Chem 2002;184:203-13.

59. Petit C, Rehspringer JL, Kaddouri A, Libs S, Poix P, Kiennemann A. Oxidative coupling of methane by pyrochlore oxide A2B2O7 (A = rare earth, B = Ti, Zr, Sn). Relation between C2 selectivity and B-O bond energy. Catal Today 1992;13:409-16.

60. Zhang C, Liu X, Jiang M, Wen Y, Zhang J, Qian G. A review on identification, quantification, and transformation of active species in SCR by EPR spectroscopy. Environ Sci Pollut Res Int 2023;30:28550-62.

61. Shi Y, Wang X, Chen L, et al. In situ DRIFT study on NH3 selective catalytic reduction of NOx over HBEA zeolite doped with CeO2. Appl Surf Sci 2020;506:144715.

62. Choudhary V. Acidity/basicity of rare-earth oxides and their catalytic activity in oxidative coupling of methane to C2-hydrocarbons. J Catal 1991;130:411-22.

63. Scott JF, Palai R, Kumar A, et al. New phase transitions in perovskite oxides: BiFeO3, SrSnO3, and Pb(Fe2/3W1/3)1/2Ti1/2O3. J Am Ceram Soc 2008;91:1762-8.

Chemical Synthesis
ISSN 2769-5247 (Online)

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/