REFERENCES
1. Garg R, Mondal S, Sahoo L, Vinod CP, Gautam UK. Nanocrystalline Ag3PO4 for sunlight- and ambient air-driven oxidation of amines: high photocatalytic efficiency and a facile catalyst regeneration strategy. ACS Appl Mater Interfaces. 2020;12:29324-34.
2. Ye J, Ni K, Liu J, Chen G, Ikram M, Zhu Y. Oxygen-rich carbon quantum dots as catalysts for selective oxidation of amines and alcohols. ChemCatChem. 2018;10:259-65.
3. Wang Z, Lang X. Visible light photocatalysis of dye-sensitized TiO2: the selective aerobic oxidation of amines to imines. Appl Catal B Environ. 2018;224:404-9.
4. Raza F, Park JH, Lee HR, Kim HI, Jeon SJ, Kim JH. Visible-light-driven oxidative coupling reactions of amines by photoactive WS2 nanosheets. ACS Catal. 2016;6:2754-9.
5. Su F, Mathew SC, Möhlmann L, Antonietti M, Wang X, Blechert S. Aerobic oxidative coupling of amines by carbon nitride photocatalysis with visible light. Angew Chem Int Ed Engl. 2011;50:657-60.
6. Kumar A, Kumar P, Joshi C, et al. A [Fe(bpy)3]2+ grafted graphitic carbon nitride hybrid for visible light assisted oxidative coupling of benzylamines under mild reaction conditions. Green Chem. 2016;18:2514-21.
7. Wei H, Guo Z, Liang X, Chen P, Liu H, Xing H. Selective photooxidation of amines and sulfides triggered by a superoxide radical using a novel visible-light-responsive metal-organic framework. ACS Appl Mater Interfaces. 2019;11:3016-23.
8. Kumar A, Sadanandhan AM, Jain SL. Silver doped reduced graphene oxide as a promising plasmonic photocatalyst for oxidative coupling of benzylamines under visible light irradiation. New J Chem. 2019;43:9116-22.
9. Kumar R, Gleissner EH, Tiu EG, Yamakoshi Y. C70 as a photocatalyst for oxidation of secondary benzylamines to imines. Org Lett. 2016;18:184-7.
10. Li H, Kang Z, Liu Y, Lee S. Carbon nanodots: synthesis, properties and applications. J Mater Chem. 2012;22:24230.
11. Han M, Zhu S, Lu S, et al. Recent progress on the photocatalysis of carbon dots: classification, mechanism and applications. Nano Today. 2018;19:201-18.
12. Bian J, Huang C, Wang L, Hung T, Daoud WA, Zhang R. Carbon dot loading and TiO2 nanorod length dependence of photoelectrochemical properties in carbon dot/TiO2 nanorod array nanocomposites. ACS Appl Mater Interfaces. 2014;6:4883-90.
13. Zhang J, Xu J, Tao F. Interface modification of TiO2 nanotubes by biomass-derived carbon quantum dots for enhanced photocatalytic reduction of CO2. ACS Appl Energy Mater. 2021;4:13120-31.
14. Zhou D, Li D, Jing P, et al. Conquering aggregation-induced solid-state luminescence quenching of carbon dots through a carbon dots-triggered silica gelation process. Chem Mater. 2017;29:1779-87.
15. Su J, Lu S, Hai J, et al. Confining carbon dots in porous wood: the singlet oxygen enhancement strategy for photothermal signal-amplified detection of Mn2+. ACS Sustainable Chem Eng. 2020;8:17687-96.
16. Hu S, Zhou Y, Xue C, Yang J, Chang Q. A solid reaction towards in situ hybridization of carbon dots and conjugated polymers for enhanced light absorption and conversion. Chem Commun. 2017;53:9426-9.
17. Huo P, Guan J, Zhou M, et al. Carbon quantum dots modified CdSe loaded reduced graphene oxide for enhancing photocatalytic activity. J Ind Eng Chem. 2017;50:147-54.
18. Vattikuti SVP, Devarayapalli KC, Reddy Nallabala NK, Nguyen TN, Nguyen Dang N, Shim J. Onion-ring-like carbon and nitrogen from ZIF-8 on TiO2/Fe2O3 nanostructure for overall electrochemical water splitting. J Phys Chem Lett. 2021;12:5909-18.
19. Han Y, Huang H, Zhang H, et al. Carbon quantum dots with photoenhanced hydrogen-bond catalytic activity in aldol condensations. ACS Catal. 2014;4:781-7.
20. Kumar A, Hamdi A, Coffinier Y, et al. Visible light assisted oxidative coupling of benzylamines using heterostructured nanocomposite photocatalyst. J Photochem Photobiol A Chem. 2018;356:457-63.
21. Samanta S, Khilari S, Srivastava R. Stimulating the visible-light catalytic activity of Bi2MoO6 nanoplates by embedding carbon dots for the efficient oxidation, cascade reaction, and photoelectrochemical O2 evolution. ACS Appl Nano Mater. 2018;1:426-41.
22. Wang Q, Li J, Tu X, et al. Single atomically anchored cobalt on carbon quantum dots as efficient photocatalysts for visible light-promoted oxidation reactions. Chem Mater. 2020;32:734-43.
23. Pal A, Sk MP, Chattopadhyay A. Conducting carbon dot-polypyrrole nanocomposite for sensitive detection of picric acid. ACS Appl Mater Interfaces. 2016;8:5758-62.
24. He Y, He J, Yu Z, et al. Double carbon dot assembled mesoporous aluminas: solid-state dual-emission photoluminescence and multifunctional applications. J Mater Chem C. 2018;6:2495-501.
25. He Y, He J, Wang L, et al. Synthesis of double carbon dots co-doped mesoporous Al2O3 for ratiometric fluorescent determination of oxygen. Sens Actuators B:Chem. 2017;251:918-26.
26. Wang B, Wang H, Hu Y, Waterhouse GIN, Lu S. Carbon dot based multicolor electroluminescent LEDs with nearly 100% exciton utilization efficiency. Nano Lett. 2023;23:8794-800.
27. Long C, Qing T, Fu Q, et al. Low-temperature rapid synthesis of high-stable carbon dots and its application in biochemical sensing. Dyes Pigm. 2020;175:108184.
28. Aghamali A, Khosravi M, Hamishehkar H, Modirshahla N, Behnajady MA. Synthesis and characterization of high efficient photoluminescent sunlight driven photocatalyst of N-Carbon Quantum Dots. J Lumin. 2018;201:265-74.
29. Pan D, Zhang J, Li Z, Wu C, Yan X, Wu M. Observation of pH-, solvent-, spin-, and excitation-dependent blue photoluminescence from carbon nanoparticles. Chem Commun. 2010;46:3681-3.
30. Hou C, Liu K, Yu X, et al. Nitrogen-doped porous carbons synthesized with low-temperature sodium amide activation as metal-free catalysts for oxidative coupling of amines to imines. J Mater Sci. 2021;56:16865-76.
31. Sun Y, Hou C, Cao X, Liu K. Facile synthesis of nitrogen-doped foam-like carbon materials from purslane stem as efficient metal-free catalysts for oxidative coupling of amines to imines. J Mater Sci. 2021;56:6124-34.
32. Liu C, Li N, Peng L, Zhong W, Mao L, Yin D. Hydrothermal carbonization of renewable natural plants as superior metal-free catalysts for aerobic oxidative coupling of amines to imines. ACS Sustainable Chem Eng. 2020;8:11404-12.
33. Chen T, Ye T, Zhu J, et al. Small-sized biomass-derived hydrothermal carbon with enriched oxygen groups quickens benzene hydroxylation to phenol with dioxygen. Appl Catal A Gen. 2021;626:118356.
34. Titirici MM, Antonietti M. Chemistry and materials options of sustainable carbon materials made by hydrothermal carbonization. Chem Soc Rev. 2010;39:103-16.
35. Chen N, Huang Y, Hou X, Ai Z, Zhang L. Photochemistry of hydrochar: reactive oxygen species generation and sulfadimidine degradation. Environ Sci Technol. 2017;51:11278-87.
36. Ye Q, Huang Z, Wu P, et al. Promoting the photogeneration of hydrochar reactive oxygen species based on FeAl layered double hydroxide for diethyl phthalate degradation. J Hazard Mater. 2020;388:122120.
37. Sun X, Luo X, Zhang X, et al. Enhanced superoxide generation on defective surfaces for selective photooxidation. J Am Chem Soc. 2019;141:3797-801.
38. Wang H, Jiang S, Chen S, et al. Enhanced singlet oxygen generation in oxidized graphitic carbon nitride for organic synthesis. Adv Mater. 2016;28:6940-5.
39. Demir-cakan R, Makowski P, Antonietti M, Goettmann F, Titirici M. Hydrothermal synthesis of imidazole functionalized carbon spheres and their application in catalysis. Catal Today. 2010;150:115-8.
40. Titirici M, White RJ, Falco C, Sevilla M. Black perspectives for a green future: hydrothermal carbons for environment protection and energy storage. Energy Environ Sci. 2012;5:6796-822.
41. Zhao Z, Ge G, Li W, Guo X, Wang G. Modulating the microstructure and surface chemistry of carbocatalysts for oxidative and direct dehydrogenation: a review. Chinese J Catal. 2016;37:644-70.
42. Su F, Peng H, Yin H, et al. Biowaste-derived hydrochar microspheres: Realizing metal-free visible-light photocatalytic oxidation of amines. J Catal. 2021;404:149-62.
43. Wang W, Chen M. Catalytic degradation of sulfamethoxazole by peroxymonosulfate activation system composed of nitrogen-doped biochar from pomelo peel: Important roles of defects and nitrogen, and detoxification of intermediates. J Colloid Interface Sci. 2022;613:57-70.
44. Zhao S, Wang Y, Wang L, Jin Y. Preparation, characterization and catalytic application of hierarchically porous LaFeO3 from a pomelo peel template. Inorg Chem Front. 2017;4:994-1002.
45. Ma R, Fakudze S, Shang Q, et al. Catalytic hydrothermal carbonization of pomelo peel for enhanced combustibility of coal/hydrochar blends and reduced CO2 emission. Fuel. 2021;304:121422.
46. Sun H, Ni H, Chen F, Jiang Z, Huang G, Yang Y. Effect of oxygen and heating on aromas of pummelo (Citrus maxima) essential oil. J Essent Oil Res. 2018;30:92-104.
47. Zheng H, Sun Q, Li Y, Du Q. Biosorbents prepared from pomelo peel by hydrothermal technique and its adsorption properties for congo red. Mater Res Express. 2020;7:045505.
48. Tran HN, Tomul F, Thi Hoang Ha N, et al. Innovative spherical biochar for pharmaceutical removal from water: Insight into adsorption mechanism. J Hazard Mater. 2020;394:122255.
49. Huang R, Cao M, Guo H, Qi W, Su R, He Z. Enhanced ethanol production from pomelo peel waste by integrated hydrothermal treatment, multienzyme formulation, and fed-batch operation. J Agric Food Chem. 2014;62:4643-51.
50. Geng Y, Sun W, Ying P, et al. Bioinspired fractal design of waste biomass-derived solar - thermal materials for highly efficient solar evaporation. Adv Funct Mater. 2021;31:2007648.
51. Liu X, Mishra DD, Li Y, et al. Biomass-derived carbonaceous materials with multichannel waterways for solar-driven clean water and thermoelectric power generation. ACS Sustainable Chem Eng. 2021;9:4571-82.
52. Liu Q, Ma X, Zhao Y, et al. Facile synthesis of carbon dots incorporated carbonized pomelo peel by one-step method for enhanced solar evaporation. Mater Today Sustain. 2023;23:100442.
53. Ye H, Chen J, Hu Y, et al. One-pot synthesis of two-dimensional multilayered graphitic carbon nanosheets by low-temperature hydrothermal carbonization using the in situ formed copper as a template and catalyst. Chem Commun. 2020;56:11645-8.
54. Zhang P, O’Connor D, Wang Y, et al. A green biochar/iron oxide composite for methylene blue removal. J Hazard Mater. 2020;384:121286.
55. Ahmed MB, Zhou JL, Ngo HH, Johir MAH, Sornalingam K. Sorptive removal of phenolic endocrine disruptors by functionalized biochar: Competitive interaction mechanism, removal efficacy and application in wastewater. Chem Eng J. 2018;335:801-11.
56. Wang C, Jiang K, Wu Q, Wu J, Zhang C. Green synthesis of red-emitting carbon nanodots as a novel “turn-on” nanothermometer in living cells. Chemistry. 2016;22:14475-9.
57. Khan T, Kim H, Gupta A, Jamari SS, Jose R. Synthesis and characterization of carbon microspheres from rubber wood by hydrothermal carbonization. J Chem Tech Biotech. 2019;94:1374-83.
58. Fan W, Xia Y, Tjiu WW, Pallathadka PK, He C, Liu T. Nitrogen-doped graphene hollow nanospheres as novel electrode materials for supercapacitor applications. J Power Sources. 2013;243:973-81.
59. Cai X, Wang Q, Liu Y, et al. Hybrid of polyoxometalate-based ionic salt and N-doped carbon toward reductant-free aerobic hydroxylation of benzene to phenol. ACS Sustain Chem Eng. 2016;4:4986-96.
60. Ye P, Chen K, Yin Y, et al. A 3D-macroporous pomelo peel foam based on anti-shrinkage properties of MnOx for solar water purification. J Environ Chem Eng. 2022;10:106890.
61. Akiya N, Savage PE. Roles of water for chemical reactions in high-temperature water. Chem Rev. 2002;102:2725-50.
62. Fu M, Mo C, Li H, Zhang Y, Huang W, Wong MH. Comparison of physicochemical properties of biochars and hydrochars produced from food wastes. J Clean Prod. 2019;236:117637.
63. Khampuanbut A, Santalelat S, Pankiew A, et al. Visible-light-driven WO3/BiOBr heterojunction photocatalysts for oxidative coupling of amines to imines: Energy band alignment and mechanistic insight. J Colloid Interface Sci. 2020;560:213-24.
64. Zhang D, Han X, Dong T, Guo X, Song C, Zhao Z. Promoting effect of cyano groups attached on g-C3N4 nanosheets towards molecular oxygen activation for visible light-driven aerobic coupling of amines to imines. J Catal. 2018;366:237-44.
65. Bai P, Tong X, Wan J, Gao Y, Xue S. Flower-like Bi2O2CO3-mediated selective oxidative coupling processes of amines under visible light irradiation. J Catal. 2019;374:257-65.
66. Zhang K, Huang F, Dong X, Xiong K, Lang X. Benzotrithiophene-based sp2 carbon-conjugated microporous polymers for green light-triggered oxidation of amines to imines. Mater Today Chem. 2024;35:101879.
67. Dissanayake D, Achola LA, Kerns P, et al. Aerobic oxidative coupling of amines to imines by mesoporous copper aluminum mixed metal oxides via generation of Reactive Oxygen Species (ROS). Appl Catal B Environ. 2019;249:32-41.
68. Liu L, Cai W, Dang C, et al. One-step vapor-phase assisted hydrothermal synthesis of functionalized carbons: effects of surface groups on their physicochemical properties and adsorption performance for Cr(VI). Appl Surf Sci. 2020;528:146984.
69. Zhang Y, Gonçalves H, da Silva JC, Geddes CD. Metal-enhanced photoluminescence from carbon nanodots. Chem Commun. 2011;47:5313-5.
70. Zeng X, Wan Y, Gong X, Xu Z. Additive dependent synthesis of bismuth oxybromide composites for photocatalytic removal of the antibacterial agent ciprofloxacin and mechanism insight. RSC Adv. 2017;7:36269-78.
71. Xue X, Chen R, Chen H, et al. Oxygen vacancy engineering promoted photocatalytic ammonia synthesis on ultrathin two-dimensional bismuth oxybromide nanosheets. Nano Lett. 2018;18:7372-7.
72. Li H, Shi J, Zhao K, Zhang L. Sustainable molecular oxygen activation with oxygen vacancies on the {001} facets of BiOCl nanosheets under solar light. Nanoscale. 2014;6:14168-73.
73. Wang H, Yong D, Chen S, et al. Correction to “oxygen-vacancy-mediated exciton dissociation in biobr for boosting charge-carrier-involved molecular oxygen activation”. J Am Chem Soc. 2018;140:5320.
74. Kumar I, Kumar R, Gupta SS, Sharma U. C70 fullerene catalyzed photoinduced aerobic oxidation of benzylamines to imines and aldehydes. J Org Chem. 2021;86:6449-57.
75. Xu C, Liu H, Li D, Su JH, Jiang HL. Direct evidence of charge separation in a metal-organic framework: efficient and selective photocatalytic oxidative coupling of amines via charge and energy transfer. Chem Sci. 2018;9:3152-8.