REFERENCES

1. Chen, P. C.; Chen, C.; Yang, Y.; et al. Chemical and structural evolution of AgCu catalysts in electrochemical CO2 reduction. J. Am. Chem. Soc. 2023, 145, 10116-25.

2. Guo, H.; Si, D. H.; Zhu, H. J.; Chen, Z. A.; Cao, R.; Huang, Y. B. Boosting CO2 electroreduction over a covalent organic framework in the presence of oxygen. Angew. Chem. Int. Ed. Engl. 2024, 63, e202319472.

3. Yang, X.; Yang, J.; Zhao, T.; et al. Kinetic insights into the effect of promoters on Co/Al2O3 for Fischer-Tropsch synthesis. Chem. Eng. J. 2022, 445, 136655.

4. Wan, X.; Li, Y.; Chen, Y.; et al. A nonmetallic plasmonic catalyst for photothermal CO2 flow conversion with high activity, selectivity and durability. Nat. Commun. 2024, 15, 1273.

5. Li, S.; Kan, Z.; Wang, H.; et al. Single-atom photo-catalysts: synthesis, characterization, and applications. Nano. Mater. Sci. 2024, 6, 284-304.

6. Wang, J.; Huang, Y. C.; Wang, Y.; et al. Atomically dispersed metal-nitrogen-carbon catalysts with d-orbital electronic configuration-dependent selectivity for electrochemical CO2-to-CO reduction. ACS. Catal. 2023, 13, 2374-85.

7. Zeng, Y.; Zhao, J.; Wang, S.; et al. Unraveling the electronic structure and dynamics of the atomically dispersed iron sites in electrochemical CO2 reduction. J. Am. Chem. Soc. 2023, 145, 15600-10.

8. Akula, S.; Mooste, M.; Kozlova, J.; et al. Transition metal (Fe, Co, Mn, Cu) containing nitrogen-doped porous carbon as efficient oxygen reduction electrocatalysts for anion exchange membrane fuel cells. Chem. Eng. J. 2023, 458, 141468.

9. Murphy, E.; Liu, Y.; Matanovic, I.; et al. Elucidating electrochemical nitrate and nitrite reduction over atomically-dispersed transition metal sites. Nat. Commun. 2023, 14, 4554.

10. Zhao, Z.; Shi, X.; Shen, Z.; et al. Single-atom Fe nanozymes coupling with atomic clusters as superior oxidase mimics for ratiometric fluorescence detection. Chem. Eng. J. 2023, 469, 143923.

11. Liu, H.; Zhu, P.; Yang, D.; et al. Pd-Mn/NC dual single-atomic sites with hollow mesopores for the highly efficient semihydrogenation of phenylacetylene. J. Am. Chem. Soc. 2024, 146, 2132-40.

12. Zhang, D.; Wang, Z.; Liu, F.; et al. Unraveling the pH-dependent oxygen reduction performance on single-atom catalysts: from single- to dual-Sabatier optima. J. Am. Chem. Soc. 2024, 146, 3210-9.

13. Liu, Y.; Li, C.; Loubidi, M.; et al. Increasing exposure of atomically dispersed Ni sites via constructing hierarchically porous supports for enhanced electrochemical CO2 reduction. Chem. Eng. J. 2021, 426, 131414.

14. Pan, F.; Zhang, H.; Liu, K.; et al. Unveiling active sites of CO2 reduction on nitrogen-coordinated and atomically dispersed iron and cobalt catalysts. ACS. Catal. 2018, 8, 3116-22.

15. Wang, X.; Li, X.; Ding, S.; et al. Constructing ample active sites in nitrogen-doped carbon materials for efficient electrocatalytic carbon dioxide reduction. Nano. Energy. 2021, 90, 106541.

16. Bai, J.; Sun, Z.; Zhang, H.; et al. Modulating the local coordination environment of M-Nx single-atom site for enhanced electrocatalytic oxygen reduction. Adv. Funct. Mater. 2025, 35, 2417013.

17. Huang, Z. Y.; Guo, X. S.; Tang, Y.; Ye, J. S.; Liu, H. Y.; Xiao, X. Y. Metalloporphyrin doped macroporous ZIF-8 metal-organic framework derived M-Nx carbon material for oxygen reduction reactions. J. Alloy. Compd. 2023, 947, 169441.

18. Miao, Z.; Li, S.; Priest, C.; Wang, T.; Wu, G.; Li, Q. Effective approaches for designing stable M-Nx/C oxygen-reduction catalysts for proton-exchange-membrane fuel cells. Adv. Mater. 2022, 34, e2200595.

19. Xi, D.; Li, J.; Low, J.; et al. Limiting the uncoordinated N species in M-Nx single-atom catalysts toward electrocatalytic CO2 reduction in broad voltage range. Adv. Mater. 2022, 34, e2104090.

20. Devi, H. R.; Bisen, O. Y.; Chen, Z.; Nanda, K. K. Spatially dispersed one-dimensional carbon architecture on oxide framework for oxygen electrochemistry. Chem. Eng. J. 2022, 433, 133649.

21. Hu, H.; Gao, G. H.; Xiao, B. B.; Zhang, P.; Mi, J. L. The oxygen reduction reaction activity and selectivity of porous-carbon supported transition metals (M-C: M = Mn, Fe, Co, Ni, Cu) electrocatalysts. Diam. Relat. Mater. 2023, 134, 109776.

22. Jiang, T.; Jiang, H.; Wang, W.; Mu, H.; Zhang, Y.; Li, B. Atomically dispersed high-active site density copper electrocatalyst for the reduction of oxygen. Materials 2024, 17, 5030.

23. Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B. Condens. Matter. 1996, 54, 11169-86.

24. Kresse, G.; Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 1996, 6, 15-50.

25. Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B. Condens. Matter. 1994, 50, 17953-79.

26. Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B. 1999, 59, 1758-75.

27. Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865-8.

28. Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 2010, 132, 154104.

29. Grimme, S.; Ehrlich, S.; Goerigk, L. Effect of the damping function in dispersion corrected density functional theory. J. Comput. Chem. 2011, 32, 1456-65.

30. Nørskov, J. K.; Rossmeisl, J.; Logadottir, A.; et al. Origin of the overpotential for oxygen reduction at a fuel-cell cathode. J. Phys. Chem. B. 2004, 108, 17886-92.

31. Hou, Y.; Qiu, M.; Kim, M. G.; et al. Atomically dispersed nickel-nitrogen-sulfur species anchored on porous carbon nanosheets for efficient water oxidation. Nat. Commun. 2019, 10, 1392.

32. Yan, C.; Li, H.; Ye, Y.; et al. Coordinatively unsaturated nickel-nitrogen sites towards selective and high-rate CO2 electroreduction. Energy. Environ. Sci. 2018, 11, 1204-10.

33. Feng, Y.; Long, S.; Chen, B.; et al. Inducing electron dissipation of pyridinic N enabled by single Ni-N4 sites for the reduction of aldehydes/ketones with ethanol. ACS. Catal. 2021, 11, 6398-405.

34. Delmo, E. P.; Wang, Y.; Song, Y.; et al. In Situ infrared spectroscopic evidence of enhanced electrochemical CO2 reduction and C-C coupling on oxide-derived copper. J. Am. Chem. Soc. 2024, 146, 1935-45.

35. Deng, B.; Huang, M.; Li, K.; et al. The crystal plane is not the key factor for CO2 -to-methane electrosynthesis on reconstructed Cu2O microparticles. Angew. Chem. Int. Ed. Engl. 2022, 61, e202114080.

36. Wang, H.; Li, Y.; Wang, M.; et al. Precursor-mediated in situ growth of hierarchical N-doped graphene nanofibers confining nickel single atoms for CO2 electroreduction. Proc. Natl. Acad. Sci. U. S. A. 2023, 120, e2219043120.

Chemical Synthesis
ISSN 2769-5247 (Online)

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/