REFERENCES

1. Guerra, O. J.; Eichman, J.; Kurtz, J.; Hodge, B. Cost competitiveness of electrolytic hydrogen. Joule 2019, 3, 2425-43.

2. Liu, W.; Niu, X.; Tang, J.; et al. Energy-efficient anodic reactions for sustainable hydrogen production via water electrolysis. Chem. Synth. 2023, 3, 44.

3. Glenk, G.; Reichelstein, S. Economics of converting renewable power to hydrogen. Nat. Energy. 2019, 4, 216-22.

4. Bartels, J. R.; Pate, M. B.; Olson, N. K. An economic survey of hydrogen production from conventional and alternative energy sources. Int. J. Hydrogen. Energy. 2010, 35, 8371-84.

5. Henkensmeier, D.; Cho, W. C.; Jannasch, P.; et al. Separators and membranes for advanced alkaline water electrolysis. Chem. Rev. 2024, 124, 6393-443.

6. Li, L.; Laan, P. C. M.; Yan, X.; et al. High-rate alkaline water electrolysis at industrially relevant conditions enabled by superaerophobic electrode assembly. Adv. Sci. 2023, 10, e2206180.

7. Wang, Y.; Wen, C.; Tu, J.; et al. The multi-scenario projection of cost reduction in hydrogen production by proton exchange membrane (PEM) water electrolysis in the near future (2020-2060) of China. Fuel 2023, 354, 129409.

8. Zhao, J.; Urrego-Ortiz, R.; Liao, N.; Calle-Vallejo, F.; Luo, J. Rationally designed Ru catalysts supported on TiN for highly efficient and stable hydrogen evolution in alkaline conditions. Nat. Commun. 2024, 15, 6391.

9. Kweon, D. H.; Okyay, M. S.; Kim, S. J.; et al. Ruthenium anchored on carbon nanotube electrocatalyst for hydrogen production with enhanced Faradaic efficiency. Nat. Commun. 2020, 11, 1278.

10. Mahmood, J.; Li, F.; Jung, S. M.; et al. An efficient and pH-universal ruthenium-based catalyst for the hydrogen evolution reaction. Nat. Nanotechnol. 2017, 12, 441-6.

11. Gao, G.; Zhao, G.; Zhu, G.; et al. Recent advancements in noble-metal electrocatalysts for alkaline hydrogen evolution reaction. Chin. Chem. Lett. 2025, 36, 109557.

12. Lee, J. K.; Seo, J. H.; Lim, J.; Park, S.; Jang, H. W. Best practices in membrane electrode assembly for water electrolysis. ACS. Mater. Lett. 2024, 6, 2757-86.

13. Ehlers, J. C.; Feidenhans’l, A. A.; Therkildsen, K. T.; Larrazábal, G. O. Affordable green hydrogen from alkaline water electrolysis: key research needs from an industrial perspective. ACS. Energy. Lett. 2023, 8, 1502-9.

14. Marquez, R. A.; Espinosa, M.; Kalokowski, E.; et al. A guide to electrocatalyst stability using lab-scale alkaline water electrolyzers. ACS. Energy. Lett. 2024, 9, 547-55.

15. Ju, W.; Heinz, M. V. F.; Pusterla, L.; et al. Lab-scale alkaline water electrolyzer for bridging material fundamentals with realistic operation. ACS. Sustain. Chem. Eng. 2018, 6, 4829-37.

16. de Groot, M. T.; Kraakman, J.; Garcia Barros, R. L. Optimal operating parameters for advanced alkaline water electrolysis. Int. J. Hydrogen. Energy. 2022, 47, 34773-83.

17. Lira Garcia Barros, R.; Kraakman, J. T.; Sebregts, C.; van der Schaaf, J.; de Groot, M. T. Impact of an electrode-diaphragm gap on diffusive hydrogen crossover in alkaline water electrolysis. Int. J. Hydrogen. Energy. 2024, 49, 886-96.

18. Crandall, W.; Harada, Y. Improved asbestos matrices for alkaline fuel cells. 1975.

19. Xu, J.; Zhong, M.; Song, N.; Wang, C.; Lu, X. General synthesis of Pt and Ni co-doped porous carbon nanofibers to boost HER performance in both acidic and alkaline solutions. Chin. Chem. Lett. 2023, 34, 107359.

20. Sun, H.; Yan, Z.; Liu, F.; Xu, W.; Cheng, F.; Chen, J. Self-supported transition-metal-based electrocatalysts for hydrogen and oxygen evolution. Adv. Mater. 2020, 32, e1806326.

21. Katsounaros, I.; Cherevko, S.; Zeradjanin, A. R.; Mayrhofer, K. J. Oxygen electrochemistry as a cornerstone for sustainable energy conversion. Angew. Chem. Int. Ed. Engl. 2014, 53, 102-21.

22. Chen, Y.; Yu, G.; Chen, W.; et al. Highly active, nonprecious electrocatalyst comprising borophene subunits for the hydrogen evolution reaction. J. Am. Chem. Soc. 2017, 139, 12370-3.

23. Zou, X.; Wu, Y.; Liu, Y.; et al. In situ generation of bifunctional, efficient Fe-based catalysts from mackinawite iron sulfide for water splitting. Chem 2018, 4, 1139-52.

24. Zhou, H.; Hou, J.; Zhang, L.; et al. In-situ fabrication of vertical heterogeneous nickel diselenide-molybdenum diselenide architectures as bifunctional overall water-splitting electrocatalyst. J. Mater. Sci. Technol. 2024, 177, 256-63.

25. Yu, L.; Zhu, Q.; Song, S.; et al. Non-noble metal-nitride based electrocatalysts for high-performance alkaline seawater electrolysis. Nat. Commun. 2019, 10, 5106.

26. Yin, H.; Jiang, L.; Liu, P.; et al. Remarkably enhanced water splitting activity of nickel foam due to simple immersion in a ferric nitrate solution. Nano. Res. 2018, 11, 3959-71.

27. Zuo, Y.; Li, J.; Yu, X.; et al. A SnS2 molecular precursor for conformal nanostructured coatings. Chem. Mater. 2020, 32, 2097-106.

28. Zuo, Y.; Liu, Y.; Li, J.; et al. In situ electrochemical oxidation of Cu2S into CuO nanowires as a durable and efficient electrocatalyst for oxygen evolution reaction. Chem. Mater. 2019, 31, 7732-43.

29. Wang, N.; Song, S.; Wu, W.; Deng, Z.; Tang, C. Bridging laboratory electrocatalysts with industrially relevant alkaline water electrolyzers. Adv. Energy. Mater. 2024, 14, 2303451.

30. Lopez M, Ustarroz J. Electrodeposition of nanostructured catalysts for electrochemical energy conversion: current trends and innovative strategies. Curr. Opin. Electrochem. 2021, 27, 100688.

31. Zuo, Y.; Bellani, S.; Ferri, M.; et al. High-performance alkaline water electrolyzers based on Ru-perturbed Cu nanoplatelets cathode. Nat. Commun. 2023, 14, 4680.

32. Xie, H.; Zhao, Z.; Liu, T.; et al. A membrane-based seawater electrolyser for hydrogen generation. Nature 2022, 612, 673-8.

33. Etzi Coller Pascuzzi, M.; Man, A. J. W.; Goryachev, A.; Hofmann, J. P.; Hensen, E. J. M. Investigation of the stability of NiFe-(oxy)hydroxide anodes in alkaline water electrolysis under industrially relevant conditions. Catal. Sci. Technol. 2020, 10, 5593-601.

34. Sun, X.; Shen, W.; Liu, H.; et al. Corrosion-resistant NiFe anode towards kilowatt-scale alkaline seawater electrolysis. Nat. Commun. 2024, 15, 10351.

35. Zhang, W.; Yang, L.; Li, Z.; et al. Regulating hydrogen/oxygen species adsorption via built-in electric field -driven electron transfer behavior at the heterointerface for efficient water splitting. Angew. Chem. Int. Ed. Engl. 2024, 63, e202400888.

36. Wan, L.; Pang, M.; Le, J.; et al. Oriented intergrowth of the catalyst layer in membrane electrode assembly for alkaline water electrolysis. Nat. Commun. 2022, 13, 7956.

37. Wan, L.; Xu, Z.; Xu, Q.; Wang, P.; Wang, B. Overall design of novel 3D-ordered MEA with drastically enhanced mass transport for alkaline electrolyzers. Energy. Environ. Sci. 2022, 15, 1882-92.

38. Mao, J.; Liang, J.; Li, Y.; et al. Electrochemical lithiation regulates the active hydrogen supply on Ru-Sn nanowires for hydrogen evolution toward the high-performing anion exchange membrane water electrolyzer. J. Am. Chem. Soc. 2025, 147, 7711-20.

39. Sillen, C.; Barendrecht, E.; Janssen, L.; Vanstralen, S. Gas bubble behaviour during water electrolysis. Int. J. Hydrogen. Energy. 1982, 7, 577-87.

40. Zeng, K.; Zhang, D. Recent progress in alkaline water electrolysis for hydrogen production and applications. Prog. Energy. Combust. Sci. 2010, 36, 307-26.

41. McCrory, C. C.; Jung, S.; Ferrer, I. M.; Chatman, S. M.; Peters, J. C.; Jaramillo, T. F. Benchmarking hydrogen evolving reaction and oxygen evolving reaction electrocatalysts for solar water splitting devices. J. Am. Chem. Soc. 2015, 137, 4347-57.

42. Zuo, Y.; Bellani, S.; Saleh, G.; et al. Ru-Cu nanoheterostructures for efficient hydrogen evolution reaction in alkaline water electrolyzers. J. Am. Chem. Soc. 2023, 145, 21419-31.

43. Li, Z.; Lin, G.; Wang, L.; et al. Seed-assisted formation of NiFe anode catalysts for anion exchange membrane water electrolysis at industrial-scale current density. Nat. Catal. 2024, 7, 944-52.

44. IRENA. Green hydrogen cost reduction: Scaling up electrolysers to meet the 1.5°C climate goal. 2020. https://www.irena.org/-/media/Files/IRENA/Agency/Publication/2020/Dec/IRENA_Green_hydrogen_cost_2020.pdf. (accessed 8 May 2025).

45. Yang, L.; Gao, L.; Shan, G.; et al. Recent progress of enhanced bubble separation in alkaline water electrolyzer. Chem. Synth. 2023, 3, 41.

46. Wang, T.; Wang, J.; Wang, P.; et al. Plate structure design guideline for commercial alkaline water electrolyzers (AWEs) with improved liquid flow uniformity: multi-scale quantitative criteria and experimental validation. Int. J. Hydrogen. Energy. 2024, 49, 907-24.

Chemical Synthesis
ISSN 2769-5247 (Online)

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/