REFERENCES
1. Kibsgaard, J.; Chorkendorff, I. Considerations for the scaling-up of water splitting catalysts. Nat. Energy. 2019, 4, 430-3.
2. Xu, W.; Lu, Z.; Zhang, T.; et al. An advanced zinc air battery with nanostructured superwetting electrodes. Energy. Storage. Mater. 2019, 17, 358-65.
3. Sekhon, S. S.; Lee, J.; Park, J. Biomass-derived bifunctional electrocatalysts for oxygen reduction and evolution reaction: a review. J. Energy. Chem. 2022, 65, 149-72.
4. Chen, G.; Wang, T.; Zhang, J.; et al. Accelerated hydrogen evolution kinetics on NiFe-layered double hydroxide electrocatalysts by tailoring water dissociation active sites. Adv. Mater. 2018, 30, 1706279.
5. Fu, J.; Cano, Z. P.; Park, M. G.; Yu, A.; Fowler, M.; Chen, Z. Electrically rechargeable zinc-air batteries: progress, challenges, and perspectives. Adv. Mater. 2017, 29, 1604685.
6. Yan, Y.; Yu, R.; Liu, M.; et al. General synthesis of neighboring dual-atomic sites with a specific pre-designed distance via an interfacial-fixing strategy. Nat. Commun. 2025, 16, 334.
7. Zhao, S.; Liu, M.; Qu, Z.; et al. Cascade synthesis of Fe-N2-Fe dual-atom catalysts for superior oxygen catalysis. Angew. Chem. Int. Ed. Engl. 2024, 63, e202408914.
8. Chen, C.; Chai, J.; Sun, M.; et al. An asymmetrically coordinated ZnCoFe hetero-trimetallic atom catalyst enhances the electrocatalytic oxygen reaction. Energy. Environ. Sci. 2024, 17, 2298-308.
9. Zhang, W.; Xu, C.; Zheng, H.; Li, R.; Zhou, K. Oxygen-rich cobalt–nitrogen–carbon porous nanosheets for bifunctional oxygen electrocatalysis. Adv. Funct. Mater. 2022, 32, 2200763.
10. Chen, G.; Wang, T.; Liu, P.; et al. Promoted oxygen reduction kinetics on nitrogen-doped hierarchically porous carbon by engineering proton-feeding centers. Energy. Environ. Sci. 2020, 13, 2849-55.
11. Zhang, D.; Wang, Z.; Liu, F.; et al. Unraveling the pH-dependent oxygen reduction performance on single-atom catalysts: from single- to dual-sabatier optima. J. Am. Chem. Soc. 2024, 146, 3210-9.
12. Chen, G.; Zhong, H.; Feng, X. Active site engineering of single-atom carbonaceous electrocatalysts for the oxygen reduction reaction. Chem. Sci. 2021, 12, 15802-20.
13. Xie, H.; Xie, X.; Hu, G.; et al. Ta–TiOx nanoparticles as radical scavengers to improve the durability of Fe–N–C oxygen reduction catalysts. Nat. Energy. 2022, 7, 281-9.
14. Al-Hilfi, S. H.; Jiang, X.; Heuer, J.; et al. Single-atom catalysts through pressure-controlled metal diffusion. J. Am. Chem. Soc. 2024, 146, 19886-95.
15. Wang, A.; Li, J.; Zhang, T. Heterogeneous single-atom catalysis. Nat. Rev. Chem. 2018, 2, 65-81.
16. Li, B.; Ju, C. W.; Wang, W.; et al. Heck migratory insertion catalyzed by a single Pt atom site. J. Am. Chem. Soc. 2023, 145, 24126-35.
17. Chen, G.; An, Y.; Liu, S.; et al. Highly accessible and dense surface single metal FeN4 active sites for promoting the oxygen reduction reaction. Energy. Environ. Sci. 2022, 15, 2619-28.
18. Wang, Q.; Yang, Y.; Sun, F.; et al. Molten NaCl-assisted synthesis of porous Fe-N-C electrocatalysts with a high density of catalytically accessible FeN4 active sites and outstanding oxygen reduction reaction performance. Adv. Energy. Mater. 2021, 11, 2100219.
19. Zhang, J.; Zhao, Y.; Zhao, W.; et al. Improving electrocatalytic oxygen evolution through local field distortion in Mg/Fe dual-site catalysts. Angew. Chem. Int. Ed. 2023, 135, e202314303.
20. Li, L.; Yuan, K.; Chen, Y. Breaking the scaling relationship limit: from single-atom to dual-atom catalysts. Acc. Mater. Res. 2022, 3, 584-96.
21. Zhou, Y.; Lu, R.; Tao, X.; et al. Boosting oxygen electrocatalytic activity of Fe-N-C catalysts by phosphorus incorporation. J. Am. Chem. Soc. 2023, 145, 3647-55.
22. He, Y.; Yang, X.; Li, Y.; et al. Atomically dispersed Fe–Co dual metal sites as bifunctional oxygen electrocatalysts for rechargeable and flexible Zn–air batteries. ACS. Catal. 2022, 12, 1216-27.
23. Vij, V.; Sultan, S.; Harzandi, A. M.; et al. Nickel-based electrocatalysts for energy-related applications: oxygen reduction, oxygen evolution, and hydrogen evolution reactions. ACS. Catal. 2017, 7, 7196-225.
24. Zhu, X.; Liu, G.; Tao, X.; et al. Role of the metal precursor in preparing dual-atom catalysts for the oxygen reduction reaction. ACS. Omega. 2023, 8, 41708-17.
25. Zhu, Q.; Xiang, T.; Chen, C.; et al. Enhancing activity and stability of FeNC catalysts through co incorporation for oxygen reduction reaction. J. Colloid. Interface. Sci. 2024, 663, 53-60.
26. Chen, K.; Liu, K.; An, P.; et al. Iron phthalocyanine with coordination induced electronic localization to boost oxygen reduction reaction. Nat. Commun. 2020, 11, 4173.
27. Maouche, C.; Yang, J.; Al-Hilfi, S. H.; Tao, X.; Zhou, Y. Sulfur-doped Fe–N–C nanomaterials as catalysts for the oxygen reduction reaction in acidic medium. ACS. Appl. Nano. Mater. 2022, 5, 4397-405.
28. Zhou, Y.; Chen, G.; Wang, Q.; et al. Fe–N–C electrocatalysts with densely accessible Fe–N4 sites for efficient oxygen reduction reaction. Adv. Funct. Mater. 2021, 31, 2102420.
29. Li, R.; Fan, W.; Rao, P.; et al. Multimetallic single-atom catalysts for bifunctional oxygen electrocatalysis. ACS. Nano. 2023, 17, 18128-38.
30. Zhong, J.; Liang, Z.; Liu, N.; et al. Engineering symmetry-breaking centers and d-orbital modulation in triatomic catalysts for zinc-air batteries. ACS. Nano. 2024, 18, 5258-69.
31. Xu, Z.; Zhu, J.; Shao, J.; et al. Anti-dissolving Fe2N6 site-based carbon fiber membranes for binder-free Zn–air batteries with a 200-day lifespan. Energy. Environ. Sci. 2024, 17, 8722-33.
32. Hu, B.; Huang, A.; Zhang, X.; et al. Atomic Co/Ni dual sites with N/P-coordination as bifunctional oxygen electrocatalyst for rechargeable zinc-air batteries. Nano. Res. 2021, 14, 3482-8.