REFERENCES
1. Zhang, L.; Zhou, M.; Wang, A.; Zhang, T. Selective hydrogenation over supported metal catalysts: from nanoparticles to single atoms. Chem. Rev. 2020, 120, 683-733.
2. Liu, L.; Corma, A. Metal catalysts for heterogeneous catalysis: from single atoms to nanoclusters and nanoparticles. Chem. Rev. 2018, 118, 4981-5079.
3. Alig, L.; Fritz, M.; Schneider, S. First-row transition metal (De)hydrogenation catalysis based on functional pincer ligands. Chem. Rev. 2019, 119, 2681-751.
4. Jing, W.; Shen, H.; Qin, R.; Wu, Q.; Liu, K.; Zheng, N. Surface and interface coordination chemistry learned from model heterogeneous metal nanocatalysts: from atomically dispersed catalysts to atomically precise clusters. Chem. Rev. 2023, 123, 5948-6002.
5. Meemken, F.; Baiker, A. Recent progress in heterogeneous asymmetric hydrogenation of C═O and C═C bonds on supported noble metal catalysts. Chem. Rev. 2017, 117, 11522-69.
6. Wang, W.; Wang, S.; Ma, X.; Gong, J. Recent advances in catalytic hydrogenation of carbon dioxide. Chem. Soc. Rev. 2011, 40, 3703-27.
7. Xie, C.; Niu, Z.; Kim, D.; Li, M.; Yang, P. Surface and interface control in nanoparticle catalysis. Chem. Rev. 2020, 120, 1184-249.
8. Zhang, S.; Chang, C. R.; Huang, Z. Q.; et al. High catalytic activity and chemoselectivity of sub-nanometric Pd clusters on porous nanorods of CeO2 for hydrogenation of nitroarenes. J. Am. Chem. Soc. 2016, 138, 2629-37.
9. Li, M.; Sun, G.; Wang, Z.; et al. Structural design of single-atom catalysts for enhancing petrochemical catalytic reaction process. Adv. Mater. 2024, 36, e2313661.
10. Friend, C. M.; Xu, B. Heterogeneous catalysis: a central science for a sustainable future. Acc. Chem. Res. 2017, 50, 517-21.
11. Guo, J.; Chen, P. Interplay of alkali, transition metals, nitrogen, and hydrogen in ammonia synthesis and decomposition reactions. Acc. Chem. Res. 2021, 54, 2434-44.
12. Luneau, M.; Lim, J. S.; Patel, D. A.; Sykes, E. C. H.; Friend, C. M.; Sautet, P. Guidelines to achieving high selectivity for the hydrogenation of α,β-unsaturated aldehydes with bimetallic and dilute alloy catalysts: a review. Chem. Rev. 2020, 120, 12834-72.
13. Hu, J.; Cai, Y.; Xie, J.; Hou, D.; Yu, L.; Deng, D. Selectivity control in CO2 hydrogenation to one-carbon products. Chem 2024, 10, 1084-117.
14. Xu, M.; Hu, Z. Y.; Liang, X.; et al. Selective cleavage of α-olefins to produce acetylene and hydrogen. J. Am. Chem. Soc. 2024, 146, 12850-6.
15. Lan, X.; Wang, T. Highly selective catalysts for the hydrogenation of unsaturated aldehydes: a review. ACS. Catal. 2020, 10, 2764-90.
16. Xue, F.; Li, Q.; Lv, M.; et al. Atomic three-dimensional investigations of Pd nanocatalysts for acetylene semi-hydrogenation. J. Am. Chem. Soc. 2023, 145, 26728-35.
17. Jiang, L.; Liu, K.; Hung, S. F.; et al. Facet engineering accelerates spillover hydrogenation on highly diluted metal nanocatalysts. Nat. Nanotechnol. 2020, 15, 848-53.
18. Zhu, Q.; Lu, X.; Ji, S.; Li, H.; Wang, J.; Li, Z. Fully exposed cobalt nanoclusters anchored on nitrogen-doped carbon synthesized by a host-guest strategy for semi-hydrogenation of phenylacetylene. J. Catal. 2022, 405, 499-507.
19. Tao, F. F. Synthesis, catalysis, surface chemistry and structure of bimetallic nanocatalysts. Chem. Soc. Rev. 2012, 41, 7977-9.
20. Sudarsanam, P.; Zhong, R.; Van den Bosch, S.; Coman, S. M.; Parvulescu, V. I.; Sels, B. F. Functionalised heterogeneous catalysts for sustainable biomass valorisation. Chem. Soc. Rev. 2018, 47, 8349-402.
21. Yamazaki, Y.; Miyaji, M.; Ishitani, O. Utilization of low-concentration CO2 with molecular catalysts assisted by CO2-capturing ability of catalysts, additives, or reaction media. J. Am. Chem. Soc. 2022, 144, 6640-60.
22. Lu, Z.; Li, T.; Mudshinge, S. R.; Xu, B.; Hammond, G. B. Optimization of catalysts and conditions in Gold(I) catalysis-counterion and additive effects.
23. Ferencz, Z.; Erdőhelyi, A.; Baán, K.; et al. Effects of support and Rh additive on Co-based catalysts in the ethanol steam reforming reaction. ACS. Catal. 2014, 4, 1205-18.
24. Liu, B.; Yao, H.; Song, W.; et al. Ligand-free noble metal nanocluster catalysts on carbon supports via “soft” nitriding. J. Am. Chem. Soc. 2016, 138, 4718-21.
25. Wang, S.; Yin, K.; Zhang, Y.; Liu, H. Glycerol hydrogenolysis to propylene glycol and ethylene glycol on zirconia supported noble metal catalysts. ACS. Catal. 2013, 3, 2112-21.
26. Shin, D.; Huang, R.; Jang, M. G.; et al. Role of an interface for hydrogen production reaction over size-controlled supported metal catalysts. ACS. Catal. 2022, 12, 8082-93.
27. Ferrin, P.; Simonetti, D.; Kandoi, S.; et al. Modeling ethanol decomposition on transition metals: a combined application of scaling and Brønsted-Evans-Polanyi relations. J. Am. Chem. Soc. 2009, 131, 5809-15.
28. van Santen RA, Neurock M, Shetty SG. Reactivity theory of transition-metal surfaces: a Brønsted-Evans-Polanyi linear activation energy-free-energy analysis. Chem. Rev. 2010, 110, 2005-48.
29. Cheng, Y. L.; Hsieh, C. T.; Ho, Y. S.; Shen, M. H.; Chao, T. H.; Cheng, M. J. Examination of the Brønsted-Evans-Polanyi relationship for the hydrogen evolution reaction on transition metals based on constant electrode potential density functional theory. Phys. Chem. Chem. Phys. 2022, 24, 2476-81.
30. Leduc, J.; Frank, M.; Jürgensen, L.; Graf, D.; Raauf, A.; Mathur, S. Chemistry of actinide centers in heterogeneous catalytic transformations of small molecules. ACS. Catal. 2019, 9, 4719-41.
31. Kattel, S.; Liu, P.; Chen, J. G. Tuning selectivity of CO2 hydrogenation reactions at the metal/oxide interface. J. Am. Chem. Soc. 2017, 139, 9739-54.
32. Zhang, S.; Xia, Z.; Ma, Y.; Li, J.; Qu, Y. Competitive adsorption on PtCo/CoBOx catalysts enables the selective hydrogen-reductive-imination of nitroarenes with aldehydes into imines. J. Catal. 2019, 374, 72-81.
33. Hess, F.; Smarsly, B. M.; Over, H. Catalytic stability studies employing dedicated model catalysts. Acc. Chem. Res. 2020, 53, 380-9.
34. Su, Y.; Wang, Y.; Liu, J.; et al. Theoretical approach to predict the stability of supported single-atom catalysts. ACS. Catal. 2019, 9, 3289-97.
35. Vilé, G.; Albani, D.; Almora‐barrios, N.; López, N.; Pérez‐ramírez, J. Advances in the design of nanostructured catalysts for selective hydrogenation. ChemCatChem 2016, 8, 21-33.
36. Wu, D.; Baaziz, W.; Gu, B.; et al. Surface molecular imprinting over supported metal catalysts for size-dependent selective hydrogenation reactions. Nat. Catal. 2021, 4, 595-606.
37. Ren, X.; Dai, H.; Liu, X.; Yang, Q. Development of efficient catalysts for selective hydrogenation through multi-site division. Chinese. Journal. of. Catalysis. 2024, 62, 108-23.
38. Karim, W.; Spreafico, C.; Kleibert, A.; et al. Catalyst support effects on hydrogen spillover. Nature 2017, 541, 68-71.
39. Beaumont, S. K.; Alayoglu, S.; Specht, C.; et al. Combining in situ NEXAFS spectroscopy and CO₂ methanation kinetics to study Pt and Co nanoparticle catalysts reveals key insights into the role of platinum in promoted cobalt catalysis. J. Am. Chem. Soc. 2014, 136, 9898-901.
40. Zhang, T.; Walsh, A. G.; Yu, J.; Zhang, P. Single-atom alloy catalysts: structural analysis, electronic properties and catalytic activities. Chem. Soc. Rev. 2021, 50, 569-88.
41. Miura, H.; Endo, K.; Ogawa, R.; Shishido, T. Supported palladium-gold alloy catalysts for efficient and selective hydrosilylation under mild conditions with isolated single palladium atoms in alloy nanoparticles as the main active site. ACS. Catal. 2017, 7, 1543-53.
42. Huang, C.; Guo, Z.; Zheng, X.; et al. Deformable metal-organic framework nanosheets for heterogeneous catalytic reactions. J. Am. Chem. Soc. 2020, 142, 9408-14.
43. Zhao, Q.; Xu, Y.; Greeley, J.; Savoie, B. M. Deep reaction network exploration at a heterogeneous catalytic interface. Nat. Commun. 2022, 13, 4860.
44. Yan, H.; Lv, H.; Yi, H.; et al. Understanding the underlying mechanism of improved selectivity in pd1 single-atom catalyzed hydrogenation reaction. J. Catal. 2018, 366, 70-9.
45. Kuai, L.; Chen, Z.; Liu, S.; et al. Titania supported synergistic palladium single atoms and nanoparticles for room temperature ketone and aldehydes hydrogenation. Nat. Commun. 2020, 11, 48.
46. Zhong, W.; Zhang, G.; Zhang, Y.; et al. Enhanced activity of C2N-supported single Co atom catalyst by single atom promoter. J. Phys. Chem. Lett. 2019, 10, 7009-14.
47. Zhang, S.; Xia, Z.; Li, W.; et al. In-situ reconstruction of single-atom Pt on Co3O4 for hydrogenation. Nano. Res. 2023, 16, 6507-11.
48. Gao, W.; Liu, S.; Sun, G.; Zhang, C.; Pan, Y. Single-atom catalysts for hydrogen activation. Small 2023, 19, e2300956.
49. Lim, K. R. G.; Kaiser, S. K.; Wu, H.; et al. Nanoparticle proximity controls selectivity in benzaldehyde hydrogenation. Nat. Catal. 2024, 7, 172-84.
50. Tan, M.; Yang, Y.; Yang, Y.; et al. Hydrogen spillover assisted by oxygenate molecules over nonreducible oxides. Nat. Commun. 2022, 13, 1457.
51. Xiong, M.; Gao, Z.; Zhao, P.; et al. In situ tuning of electronic structure of catalysts using controllable hydrogen spillover for enhanced selectivity. Nat. Commun. 2020, 11, 4773.
52. Zhang, H.; Zhang, X. G.; Wei, J.; et al. Revealing the role of interfacial properties on catalytic behaviors by in situ surface-enhanced raman spectroscopy. J. Am. Chem. Soc. 2017, 139, 10339-46.
53. Wang, J.; Li, R.; Zhang, G.; et al. Confinement-induced indium oxide nanolayers formed on oxide support for enhanced CO2 hydrogenation reaction. J. Am. Chem. Soc. 2024, 146, 5523-31.
54. Liu, X.; Ren, Y.; Wang, M.; Ren, X.; Liu, J.; Yang, Q. Cooperation of Pt and TiOx in the hydrogenation of nitrobenzothiazole. ACS. Catal. 2022, 12, 11369-79.
55. Wang, X.; Xiao, T.; Liu, Y.; Zhang, C.; Zhao, F. Heterolytic hydrogenation and H- migration-assisted hydrodeoxygenation reaction under mild conditions over Pt/TiO2-D. ACS. Catal. 2024, 14, 13800-13.
56. Liu, D.; Li, Y.; Kottwitz, M.; et al. Identifying dynamic structural changes of active sites in Pt-Ni bimetallic catalysts using multimodal approaches. ACS. Catal. 2018, 8, 4120-31.
57. Liu, L.; Corma, A. Bimetallic sites for catalysis: from binuclear metal sites to bimetallic nanoclusters and nanoparticles. Chem. Rev. 2023, 123, 4855-933.
58. Yin, H.; Zheng, L.; Fang, W.; et al. Nanometre-scale spectroscopic visualization of catalytic sites during a hydrogenation reaction on a Pd/Au bimetallic catalyst. Nat. Catal. 2020, 3, 834-42.
60. Zhang, S.; Xia, Z.; Zou, Y.; Zhang, M.; Qu, Y. Spatial intimacy of binary active-sites for selective sequential hydrogenation-condensation of nitriles into secondary imines. Nat. Commun. 2021, 12, 3382.
61. Zhang, S.; Qu, Y. Spatially isolated dual-active sites enabling selective hydrogenation. Cell. Rep. Phys. Sci. 2024, 5, 101793.
62. Chen, X.; Shi, C.; Liang, C. Highly selective catalysts for the hydrogenation of alkynols: a review. Chin. J. Catal. 2021, 42, 2105-21.
63. Li, Z.; Lu, X.; Guo, C.; et al. Solvent-free selective hydrogenation of nitroaromatics to azoxy compounds over Co single atoms decorated on Nb2O5 nanomeshes. Nat. Commun. 2024, 15, 3195.
64. Navarro-Jaén, S.; Virginie, M.; Bonin, J.; Robert, M.; Wojcieszak, R.; Khodakov, A. Y. Highlights and challenges in the selective reduction of carbon dioxide to methanol. Nat. Rev. Chem. 2021, 5, 564-79.
65. Ren, Y.; Yang, Y.; Wei, M. Recent advances on heterogeneous non-noble metal catalysts toward selective hydrogenation reactions. ACS. Catal. 2023, 13, 8902-24.
66. Wei, Z.; Sun, J.; Li, Y.; Datye, A. K.; Wang, Y. Bimetallic catalysts for hydrogen generation. Chem. Soc. Rev. 2012, 41, 7994-8008.
67. Sankar, M.; Dimitratos, N.; Miedziak, P. J.; Wells, P. P.; Kiely, C. J.; Hutchings, G. J. Designing bimetallic catalysts for a green and sustainable future. Chem. Soc. Rev. 2012, 41, 8099-139.
68. Dong, C.; Mu, R.; Li, R.; et al. Disentangling local interfacial confinement and remote spillover effects in oxide-oxide interactions. J. Am. Chem. Soc. 2023, 145, 17056-65.
69. Calle-Vallejo, F.; Tymoczko, J.; Colic, V.; et al. Finding optimal surface sites on heterogeneous catalysts by counting nearest neighbors. Science 2015, 350, 185-9.
70. Jiao, F.; Guo, H.; Chai, Y.; Awala, H.; Mintova, S.; Liu, C. Synergy between a sulfur-tolerant Pt/Al2O3@sodalite core-shell catalyst and a CoMo/Al2O3 catalyst. J. Catal. 2018, 368, 89-97.
71. Zhang, Q.; Lee, I.; Joo, J. B.; Zaera, F.; Yin, Y. Core-shell nanostructured catalysts. Acc. Chem. Res. 2013, 46, 1816-24.
72. Choi, B.; Song, J.; Song, M.; et al. Core-shell engineering of Pd-Ag bimetallic catalysts for efficient hydrogen production from formic acid decomposition. ACS. Catal. 2019, 9, 819-26.
73. Pu, J.; Nishikado, K.; Wang, N.; Nguyen, T. T.; Maki, T.; Qian, E. W. Core-shell nickel catalysts for the steam reforming of acetic acid. Appl. Catal. B. Environ. 2018, 224, 69-79.
74. Hannagan, R. T.; Giannakakis, G.; Flytzani-Stephanopoulos, M.; Sykes, E. C. H. Single-atom alloy catalysis. Chem. Rev. 2020, 120, 12044-88.
75. Meng, G.; Sun, J.; Tao, L.; et al. Ru1Con single-atom alloy for enhancing fischer-tropsch synthesis. ACS. Catal. 2021, 11, 1886-96.
76. Feng, Q.; Zhao, S.; Wang, Y.; et al. Isolated single-atom pd sites in intermetallic nanostructures: high catalytic selectivity for semihydrogenation of alkynes. J. Am. Chem. Soc. 2017, 139, 7294-301.
77. Marcinkowski, M. D.; Darby, M. T.; Liu, J.; et al. Pt/Cu single-atom alloys as coke-resistant catalysts for efficient C-H activation. Nat. Chem. 2018, 10, 325-32.
78. Gao, Z.; Wang, G.; Lei, T.; et al. Enhanced hydrogen generation by reverse spillover effects over bicomponent catalysts. Nat. Commun. 2022, 13, 118.
79. Wang, M.; Gao, Z.; Zhang, B.; et al. Ultrathin coating of confined Pt nanocatalysts by atomic layer deposition for enhanced catalytic performance in hydrogenation reactions. Chemistry 2016, 22, 8438-43.
80. Zhang, S.; Gan, J.; Xia, Z.; et al. Dual-active-sites design of Co@C catalysts for ultrahigh selective hydrogenation of N-heteroarenes. Chem 2020, 6, 2994-3006.
81. Sun, Y.; Ren, J.; Zhang, S. Breaking the H2 pressure dependence in hydrogenation through interfacial *H reservoirs on Cu-WO3 catalysts. ACS. Catal. 2025, 15, 14331-40.
82. Zhang, Y.; Lewis, R. J.; Li, Z.; He, X.; Ji, H.; Hutchings, G. J. Direct synthesis of H2O2 by spatially separate hydrogen and oxygen activation sites on tailored Pt-Au catalysts. Angew. Chem. Int. Ed. Engl. 2026, 65, e21118.
83. Sui, C.; Dong, W.; Wang, M.; et al. Fully exposed Cu clusters with Ru single atoms synergy for high-performance acetylene semihydrogenation. J. Am. Chem. Soc. 2025, 147, 19808-16.
84. Mu, C.; Lv, C.; Meng, X.; Sun, J.; Tong, Z.; Huang, K. In situ characterization techniques applied in photocatalysis: a review. Adv. Materials. Inter. 2023, 10, 2201842.
85. Li, X.; Yang, X.; Zhang, J.; Huang, Y.; Liu, B. In situ/operando techniques for characterization of single-atom catalysts. ACS. Catal. 2019, 9, 2521-31.
86. Tran, L.; Haase, M. F. Templating interfacial nanoparticle assemblies via in situ techniques. Langmuir 2019, 35, 8584-602.
87. Wu, J.; Wang, S.; Ji, R.; et al. In situ characterization techniques for electrochemical nitrogen reduction reaction. ACS. Nano. 2024, 18, 20934-56.
88. Song, X.; Xu, L.; Sun, X.; Han, B. In situ/operando characterization techniques for electrochemical CO2 reduction. Sci. China. Chem. 2023, 66, 315-23.
89. He, B.; Zhang, Y.; Liu, X.; Chen, L. In‐situ transmission electron microscope techniques for heterogeneous catalysis. ChemCatChem 2020, 12, 1853-72.
90. Li, X.; Sun, M.; Shan, C.; Chen, Q.; Wei, X. Mechanical properties of 2D materials studied by in situ microscopy techniques. Adv. Materials. Inter. 2018, 5, 1701246.
91. Guan, Q.; Zhu, C.; Lin, Y.; et al. Bimetallic monolayer catalyst breaks the activity-selectivity trade-off on metal particle size for efficient chemoselective hydrogenations. Nat. Catal. 2021, 4, 840-9.
92. Wang, S.; Lv, Y.; Ren, J.; et al. Ultrahigh selective hydrogenation of furfural enabled by modularizing hydrogen dissociation and substrate activation. ACS. Catal. 2023, 13, 8720-30.
93. Zhu, C.; Xu, W.; Liu, F.; Luo, J.; Lu, J.; Li, W. X. Molecule saturation boosts acetylene semihydrogenation activity and selectivity on a core-shell ruthenium@palladium catalyst. Angew. Chem. Int. Ed. Engl. 2023, 62, e202300110.
94. Wang, H.; Lin, Y.; Lu, J. Ultra-thin nickel oxide overcoating of noble metal catalysts for directing selective hydrogenation of nitriles to secondary amines. Catalysis. Today. 2023, 410, 253-63.
95. Liu, W.; Feng, H.; Yang, Y.; et al. Highly-efficient RuNi single-atom alloy catalysts toward chemoselective hydrogenation of nitroarenes. Nat. Commun. 2022, 13, 3188.
96. Liu, F.; Xia, Y.; Xu, W.; et al. Integration of bimetallic electronic synergy with oxide site isolation improves the selective hydrogenation of acetylene. Angew. Chem. Int. Ed. Engl. 2021, 60, 19324-30.
97. Zhang, X.; Cui, G.; Feng, H.; et al. Platinum-copper single atom alloy catalysts with high performance towards glycerol hydrogenolysis. Nat. Commun. 2019, 10, 5812.
98. Wang, H.; Luo, Q.; Liu, W.; et al. Quasi Pd1Ni single-atom surface alloy catalyst enables hydrogenation of nitriles to secondary amines. Nat. Commun. 2019, 10, 4998.
99. Giulimondi, V.; Mitchell, S.; Pérez-Ramírez, J. Challenges and opportunities in engineering the electronic structure of single-atom catalysts. ACS. Catal. 2023, 13, 2981-97.
100. van der Hoeven, J. E. S.; Jelic, J.; Olthof, L. A.; et al. Unlocking synergy in bimetallic catalysts by core-shell design. Nat. Mater. 2021, 20, 1216-20.
101. Zhang, X.; Sun, Z.; Jin, R.; et al. Conjugated dual size effect of core-shell particles synergizes bimetallic catalysis. Nat. Commun. 2023, 14, 530.
102. Das, S.; Pérez-Ramírez, J.; Gong, J.; et al. Core-shell structured catalysts for thermocatalytic, photocatalytic, and electrocatalytic conversion of CO2. Chem. Soc. Rev. 2020, 49, 2937-3004.
103. Su, J.; Ji, Y.; Geng, S.; et al. Core-shell design of metastable phase catalyst enables highly-performance selective hydrogenation. Adv. Mater. 2024, 36, e2308839.
104. Fang, J.; Liu, Q.; Kang, X.; Chen, S. Selective hydrogenation of 4-nitrostyrene to 4-nitroethylbenzene catalyzed by Pd@Ru core-shell nanocubes. Rare. Met. 2022, 41, 1189-94.
105. Wang, S.; Wu, B.; Zhang, Q.; et al. Design of Pt@Sn core-shell nanocatalysts for highly selective hydrogenation of cinnamaldehyde to prepare cinnamyl alcohol. Chem. Eng. J. 2024, 488, 151019.
106. Islam, M. J.; Granollers, M. M.; Osatiashtiani, A.; et al. PdCu single atom alloys supported on alumina for the selective hydrogenation of furfural. Appl. Catal. B. 2021, 299, 120652.
107. Kyriakou, G.; Boucher, M. B.; Jewell, A. D.; et al. Isolated metal atom geometries as a strategy for selective heterogeneous hydrogenations. Science 2012, 335, 1209-12.
108. Yang, X. F.; Wang, A.; Qiao, B.; Li, J.; Liu, J.; Zhang, T. Single-atom catalysts: a new frontier in heterogeneous catalysis. Acc. Chem. Res. 2013, 46, 1740-8.
109. Boyes, E. D.; LaGrow, A. P.; Ward, M. R.; Mitchell, R. W.; Gai, P. L. Single atom dynamics in chemical reactions. Acc. Chem. Res. 2020, 53, 390-9.
110. Liu, J.; Tang, Y.; Wang, Y.; Zhang, T.; Li, J. Theoretical understanding of the stability of single-atom catalysts. Natl. Sci. Rev. 2018, 5, 638-41.
111. Aich, P.; Wei, H.; Basan, B.; et al. Single-atom alloy Pd-Ag catalyst for selective hydrogenation of acrolein. J. Phys. Chem. C. 2015, 119, 18140-8.
112. Guan, S.; Yuan, Z.; Zhuang, Z.; et al. Why do single-atom alloys catalysts outperform both single-atom catalysts and nanocatalysts on MXene? Angew. Chem. Int. Ed. Engl. 2024, 63, e202316550.
113. Ngan, H. T.; Sautet, P. Tuning the hydrogenation selectivity of an unsaturated aldehyde via single-atom alloy catalysts. J. Am. Chem. Soc. 2024, 146, 2556-67.
114. Zhou, C.; Zhao, J. Y.; Liu, P. F.; et al. Towards the object-oriented design of active hydrogen evolution catalysts on single-atom alloys. Chem. Sci. 2021, 12, 10634-42.
115. Qiao, M.; Wu, Q.; Wang, Y.; et al. Selective hydrogenation catalysis enabled by nanoscale galvanic reactions. Chem 2024, 10, 3385-95.
116. Zhao, Z.; Li, X.; Liu, X.; et al. Pt/Fe-TiO2-catalyzed selective carbonyl hydrogenation: Fe-promoted hydrogen spillover. ACS. Catal. 2024, 14, 4478-88.
117. Li, X.; Liu, J.; Wu, J.; Zhang, L.; Cao, D.; Cheng, D. Constructing a highly active Pd atomically dispersed catalyst for cinnamaldehyde hydrogenation: synergistic catalysis between Pd-N3 single atoms and fully exposed Pd clusters. ACS. Catal. 2024, 14, 2369-79.
118. Wang, S.; Lv, Y.; Wang, X.; et al. Insights into the active sites of dual‐zone synergistic catalysts for semi‐hydrogenation under hydrogen spillover. AIChE. Journal. 2023, 69, e17886.
119. Deng, P.; Duan, J.; Liu, F.; et al. Atomic insights into synergistic nitroarene hydrogenation over nanodiamond-supported Pt1-Fe1 dual-single-atom catalyst. Angew. Chem. Int. Ed. Engl. 2023, 62, e202307853.
120. Shen, Q.; Jin, H.; Li, P.; et al. Breaking the activity limitation of iridium single-atom catalyst in hydrogenation of quinoline with synergistic nanoparticles catalysis. Nano. Res. 2022, 15, 5024-31.
121. Zou, H.; Dai, J.; Suo, J.; et al. Dual metal nanoparticles within multicompartmentalized mesoporous organosilicas for efficient sequential hydrogenation. Nat. Commun. 2021, 12, 4968.
122. Fu, J.; Dong, J.; Si, R.; et al. Synergistic effects for enhanced catalysis in a dual single-atom catalyst. ACS. Catal. 2021, 11, 1952-61.
123. Zhang, J.; Gao, Z.; Wang, S.; et al. Origin of synergistic effects in bicomponent cobalt oxide-platinum catalysts for selective hydrogenation reaction. Nat. Commun. 2019, 10, 4166.
124. Phaahlamohlaka, T. N.; Kumi, D. O.; Dlamini, M. W.; et al. Effects of Co and Ru intimacy in Fischer-Tropsch catalysts using hollow carbon sphere supports: assessment of the hydrogen spillover processes. ACS. Catal. 2017, 7, 1568-78.
125. Conner, W. C.; Falconer, J. L. Spillover in heterogeneous catalysis. Chem. Rev. 1995, 95, 759-88.
126. Im, J.; Shin, H.; Jang, H.; Kim, H.; Choi, M. Maximizing the catalytic function of hydrogen spillover in platinum-encapsulated aluminosilicates with controlled nanostructures. Nat. Commun. 2014, 5, 3370.
127. Xiong, M.; Gao, Z.; Qin, Y. Spillover in heterogeneous catalysis: new insights and opportunities. ACS. Catal. 2021, 11, 3159-72.
128. Zhang, S.; Xia, Z.; Zhang, M.; et al. Boosting selective hydrogenation through hydrogen spillover on supported-metal catalysts at room temperature. Appl. Catal. B. 2021, 297, 120418.
129. Liu, K.; Yan, P.; Jiang, H.; et al. Silver initiated hydrogen spillover on anatase TiO2 creates active sites for selective hydrodeoxygenation of guaiacol. J. Catal. 2019, 369, 396-404.
130. Shun, K.; Mori, K.; Masuda, S.; et al. Revealing hydrogen spillover pathways in reducible metal oxides. Chem. Sci. 2022, 13, 8137-47.
131. Sun, Y.; Du, B.; Wang, Y.; Zhang, M.; Zhang, S. Hydrogen spillover-accelerated selective hydrogenation on WO3 with ppm-level Pd. ACS. Appl. Mater. Interfaces. 2023, 15, 20474-82.
132. Wei, J.; Qin, S. N.; Liu, J. L.; et al. In situ raman monitoring and manipulating of interfacial hydrogen spillover by precise fabrication of Au/TiO2/Pt sandwich structures. Angew. Chem. Int. Ed. Engl. 2020, 59, 10343-7.
133. Li, W.; Gan, J.; Liu, Y.; Zou, Y.; Zhang, S.; Qu, Y. Platinum and frustrated lewis pairs on ceria as dual-active sites for efficient reverse water-gas shift reaction at low temperatures. Angew. Chem. Int. Ed. Engl. 2023, 62, e202305661.
134. Beaumont, S. K.; Alayoglu, S.; Specht, C.; Kruse, N.; Somorjai, G. A. A nanoscale demonstration of hydrogen atom spillover and surface diffusion across silica using the kinetics of CO2 methanation catalyzed on spatially separate Pt and Co nanoparticles. Nano. Lett. 2014, 14, 4792-6.
135. Wang, S.; Zhao, Z. J.; Chang, X.; et al. Activation and spillover of hydrogen on sub-1 nm palladium nanoclusters confined within sodalite zeolite for the semi-hydrogenation of alkynes. Angew. Chem. Int. Ed. Engl. 2019, 58, 7668-72.





