REFERENCES
1. Miao, L.; Jia, W.; Cao, X.; Jiao, L. Computational chemistry for water-splitting electrocatalysis. Chem. Soc. Rev. 2024, 53, 2771-807.
2. Wei, S.; Sacchi, R.; Tukker, A.; Suh, S.; Steubing, B. Future environmental impacts of global hydrogen production. Energy. Environ. Sci. 2024, 17, 2157-72.
3. Zhao, L.; Wang, S.; Liang, S.; An, Q.; Fu, J.; Hu, J. Coordination anchoring synthesis of high-density single-metal-atom sites for electrocatalysis. Coord. Chem. Rev. 2022, 466, 214603.
4. Nakaya, Y.; Furukawa, S. Catalysis of alloys: classification, principles, and design for a variety of materials and reactions. Chem. Rev. 2023, 123, 5859-947.
5. Liu, L.; Corma, A. Bimetallic sites for catalysis: from binuclear metal sites to bimetallic nanoclusters and nanoparticles. Chem. Rev. 2023, 123, 4855-933.
6. Yun, Q.; Lu, Q.; Li, C.; et al. Synthesis of PdM (M = Zn, Cd, ZnCd) nanosheets with an unconventional face-centered tetragonal phase as highly efficient electrocatalysts for ethanol oxidation. ACS. Nano. 2019, 13, 14329-36.
7. Zhang, Z.; Liu, G.; Cui, X.; et al. Crystal phase and architecture engineering of lotus-thalamus-shaped Pt-Ni anisotropic superstructures for highly efficient electrochemical hydrogen evolution. Adv. Mater. 2018, 30, 1801741.
8. Zhu, J.; Elnabawy, A. O.; Lyu, Z.; et al. Facet-controlled Pt–Ir nanocrystals with substantially enhanced activity and durability towards oxygen reduction. Mater. Today. 2020, 35, 69-77.
9. Kyriakou, G.; Boucher, M. B.; Jewell, A. D.; et al. Isolated metal atom geometries as a strategy for selective heterogeneous hydrogenations. Science 2012, 335, 1209-12.
10. Hannagan, R. T.; Giannakakis, G.; Flytzani-Stephanopoulos, M.; Sykes, E. C. H. Single-atom alloy catalysis. Chem. Rev. 2020, 120, 12044-88.
11. Mao, J.; Yin, J.; Pei, J.; Wang, D.; Li, Y. Single atom alloy: an emerging atomic site material for catalytic applications. Nano. Today. 2020, 34, 100917.
12. Zhang, T.; Walsh, A. G.; Yu, J.; Zhang, P. Single-atom alloy catalysts: structural analysis, electronic properties and catalytic activities. Chem. Soc. Rev. 2021, 50, 569-88.
13. Sun, X.; Song, Y.; Jiang, G.; Lan, X.; Xu, C. Fundamentals and catalytic applications of single-atom alloys. Sci. China. Mater. 2024, 67, 1-17.
14. Pei, G.; Liu, X.; Chai, M.; Wang, A.; Zhang, T. Isolation of Pd atoms by Cu for semi-hydrogenation of acetylene: effects of Cu loading. Chin. J. Catal. 2017, 38, 1540-8.
15. Pei, G. X.; Liu, X. Y.; Yang, X.; et al. Performance of Cu-alloyed Pd single-atom catalyst for semihydrogenation of acetylene under simulated front-end conditions. ACS. Catal. 2017, 7, 1491-500.
16. Pei, G. X.; Liu, X. Y.; Wang, A.; et al. Ag alloyed Pd single-atom catalysts for efficient selective hydrogenation of acetylene to ethylene in excess ethylene. ACS. Catal. 2015, 5, 3717-25.
17. Pei, G. X.; Liu, X. Y.; Wang, A.; et al. Promotional effect of Pd single atoms on Au nanoparticles supported on silica for the selective hydrogenation of acetylene in excess ethylene. New. J. Chem. 2014, 38, 2043.
18. Shen, T.; Wang, S.; Zhao, T.; Hu, Y.; Wang, D. Recent advances of single-atom-alloy for energy electrocatalysis. Adv. Energy. Mater. 2022, 12, 2201823.
19. Da, Y.; Jiang, R.; Tian, Z.; Han, X.; Chen, W.; Hu, W. The applications of single-atom alloys in electrocatalysis: progress and challenges. SmartMat 2023, 4, e1136.
20. Zhuang, J.; Wang, D. Recent advances of single-atom alloy catalyst: properties, synthetic methods and electrocatalytic applications. Mater. Today. Catal. 2023, 2, 100009.
21. Gao, Q.; Han, X.; Liu, Y.; Zhu, H. Electrifying energy and chemical transformations with single-atom alloy nanoparticle catalysts. ACS. Catal. 2024, 14, 6045-61.
22. Ahmed, M.; Wang, C.; Zhao, Y.; et al. Bridging together theoretical and experimental perspectives in single-atom alloys for electrochemical ammonia production. Small 2024, 20, 2308084.
23. Gao, Q.; Yao, B.; Pillai, H. S.; et al. Synthesis of core/shell nanocrystals with ordered intermetallic single-atom alloy layers for nitrate electroreduction to ammonia. Nat. Synth. 2023, 2, 624-34.
24. Cao, Y.; Chen, S.; Bo, S.; et al. Single atom Bi decorated copper alloy enables C-C coupling for electrocatalytic reduction of CO2 into C2+ products. Angew. Chem. Int. Ed. Engl. 2023, 62, 202303048.
25. Wang, J.; Xin, S.; Xiao, Y.; et al. Manipulating the water dissociation electrocatalytic sites of bimetallic nickel-based alloys for highly efficient alkaline hydrogen evolution. Angew. Chem. Int. Ed. Engl. 2022, 61, 202202518.
26. Wang, H.; Zhang, K. H. L.; Hofmann, J. P.; de la Peña O’shea, V. A.; Oropeza, F. E. The electronic structure of transition metal oxides for oxygen evolution reaction. J. Mater. Chem. A. 2021, 9, 19465-88.
27. Hansen, J. N.; Prats, H.; Toudahl, K. K.; et al. Is there anything better than Pt for HER? ACS. Energy. Lett. 2021, 6, 1175-80.
28. Zhu, J.; Hu, L.; Zhao, P.; Lee, L. Y. S.; Wong, K. Y. Recent advances in electrocatalytic hydrogen evolution using nanoparticles. Chem. Rev. 2020, 120, 851-918.
29. Zhang, Z.; Yates, J. T. Jr. Band bending in semiconductors: chemical and physical consequences at surfaces and interfaces. Chem. Rev. 2012, 112, 5520-51.
30. Ding, C.; Shi, J.; Wang, Z.; Li, C. Photoelectrocatalytic water splitting: significance of cocatalysts, electrolyte, and interfaces. ACS. Catal. 2017, 7, 675-88.
31. Yao, Y.; Hu, S.; Chen, W.; et al. Engineering the electronic structure of single atom Ru sites via compressive strain boosts acidic water oxidation electrocatalysis. Nat. Catal. 2019, 2, 304-13.
32. Mao, J.; He, C. T.; Pei, J.; et al. Accelerating water dissociation kinetics by isolating cobalt atoms into ruthenium lattice. Nat. Commun. 2018, 9, 4958.
33. Greiner, M. T.; Jones, T. E.; Beeg, S.; et al. Free-atom-like d states in single-atom alloy catalysts. Nat. Chem. 2018, 10, 1008-15.
34. Lee, J.; Kumar, A.; Yang, T.; et al. Stabilizing the OOH* intermediate via pre-adsorbed surface oxygen of a single Ru atom-bimetallic alloy for ultralow overpotential oxygen generation. Energy. Environ. Sci. 2020, 13, 5152-64.
35. Li, M.; Duanmu, K.; Wan, C.; et al. Single-atom tailoring of platinum nanocatalysts for high-performance multifunctional electrocatalysis. Nat. Catal. 2019, 2, 495-503.
36. Zhu, Y.; Zhu, X.; Bu, L.; et al. Single-atom in-doped subnanometer Pt nanowires for simultaneous hydrogen generation and biomass upgrading. Adv. Funct. Mater. 2020, 30, 2004310.
37. Zeng, L.; Zhao, Z.; Huang, Q.; et al. Single-atom Cr-N4 sites with high oxophilicity interfaced with Pt atomic clusters for practical alkaline hydrogen evolution catalysis. J. Am. Chem. Soc. 2023, 145, 21432-41.
38. Ding, J.; Ji, Y.; Li, Y.; Hong, G. Monoatomic platinum-embedded hexagonal close-packed nickel anisotropic superstructures as highly efficient hydrogen evolution catalyst. Nano. Lett. 2021, 21, 9381-7.
39. Huo, L.; Jin, C.; Tang, J.; et al. Ultrathin NiPt single-atom alloy for synergistically accelerating alkaline hydrogen evolution. ACS. Appl. Energy. Mater. 2022, 5, 15136-45.
40. Luo, M.; Cai, J.; Zou, J.; Jiang, Z.; Wang, G.; Kang, X. Promoted alkaline hydrogen evolution by an N-doped Pt–Ru single atom alloy. J. Mater. Chem. A. 2021, 9, 14941-7.
41. Zhang, L.; Liu, H.; Liu, S.; et al. Pt/Pd single-atom alloys as highly active electrochemical catalysts and the origin of enhanced activity. ACS. Catal. 2019, 9, 9350-8.
42. Chen, C.; Wu, D.; Li, Z.; et al. Ruthenium-based single-atom alloy with high electrocatalytic activity for hydrogen evolution. Adv. Energy. Mater. 2019, 9, 1803913.
43. Tong, Y.; Liu, J.; Wang, L.; et al. Carbon-shielded single-atom alloy material family for multi-functional electrocatalysis. Adv. Funct. Mater. 2022, 32, 2205654.
44. Wang, B.; Li, J.; Li, D.; et al. Single atom iridium decorated nickel alloys supported on segregated MoO2 for alkaline water electrolysis. Adv. Mater. 2024, 36, e2305437.
45. Zhou, C.; Zhao, J. Y.; Liu, P. F.; et al. Towards the object-oriented design of active hydrogen evolution catalysts on single-atom alloys. Chem. Sci. 2021, 12, 10634-42.
46. Yang, S.; Si, Z.; Li, G.; et al. Single cobalt atoms immobilized on palladium-based nanosheets as 2D single-atom alloy for efficient hydrogen evolution reaction. Small 2023, 19, e2207651.
47. Jin, R.; Li, G.; Sharma, S.; Li, Y.; Du, X. Toward active-site tailoring in heterogeneous catalysis by atomically precise metal nanoclusters with crystallographic structures. Chem. Rev. 2021, 121, 567-648.
48. Walsh, A. G.; Zhang, P. Thiolate-protected single-atom alloy nanoclusters: correlation between electronic properties and catalytic activities. Adv. Mater. Inter. 2021, 8, 2001342.
49. Kumar, B.; Kawawaki, T.; Shimizu, N.; et al. Gold nanoclusters as electrocatalysts: size, ligands, heteroatom doping, and charge dependences. Nanoscale 2020, 12, 9969-79.
50. Kwak, K.; Choi, W.; Tang, Q.; et al. A molecule-like PtAu24(SC6H13)18 nanocluster as an electrocatalyst for hydrogen production. Nat. Commun. 2017, 8, 14723.
51. Kwak, K.; Choi, W.; Tang, Q.; Jiang, D.; Lee, D. Rationally designed metal nanocluster for electrocatalytic hydrogen production from water. J. Mater. Chem. A. 2018, 6, 19495-501.
52. Li, X.; Takano, S.; Tsukuda, T. Ligand effects on the hydrogen evolution reaction catalyzed by Au13 and Pt@Au12: alkynyl vs thiolate. J. Phys. Chem. C. 2021, 125, 23226-30.
53. Hu, G.; Tang, Q.; Lee, D.; Wu, Z.; Jiang, D. Metallic hydrogen in atomically precise gold nanoclusters. Chem. Mater. 2017, 29, 4840-7.
54. Choi, W.; Hu, G.; Kwak, K.; et al. Effects of metal-doping on hydrogen evolution reaction catalyzed by MAu24 and M2Au36 nanoclusters (M = Pt, Pd). ACS. Appl. Mater. Interfaces. 2018, 10, 44645-53.
55. Jo, Y.; Choi, M.; Kim, M.; Yoo, J. S.; Choi, W.; Lee, D. Promotion of alkaline hydrogen production via Ni-doping of atomically precise Ag nanoclusters. Bulletin. Korean. Chem. Soc. 2021, 42, 1672-7.
56. Ding, H.; Liu, H.; Chu, W.; Wu, C.; Xie, Y. Structural transformation of heterogeneous materials for electrocatalytic oxygen evolution reaction. Chem. Rev. 2021, 121, 13174-212.
57. Luo, X.; Wei, X.; Zhong, H.; et al. Single-atom Ir-anchored 3D amorphous NiFe nanowire@nanosheets for boosted oxygen evolution reaction. ACS. Appl. Mater. Interfaces. 2020, 12, 3539-46.
58. Babu, D. D.; Huang, Y.; Anandhababu, G.; et al. Atomic iridium@cobalt nanosheets for dinuclear tandem water oxidation. J. Mater. Chem. A. 2019, 7, 8376-83.
59. Mu, X.; Yu, M.; Liu, X.; et al. High-entropy ultrathin amorphous metal–organic framework-stabilized Ru(Mo) dual-atom sites for water oxidation. ACS. Energy. Lett. 2024, 9, 5763-70.
60. Su, L.; Wang, P.; Wang, J.; et al. Pt–Cu interaction induced construction of single Pt sites for synchronous electron capture and transfer in photocatalysis. Adv. Funct. Mater. 2021, 31, 2104343.
61. Pan, Y.; Qian, Y.; Zheng, X.; et al. Precise fabrication of single-atom alloy co-catalyst with optimal charge state for enhanced photocatalysis. Natl. Sci. Rev. 2021, 8, nwaa224.
62. Du, X. L.; Wang, X. L.; Li, Y. H.; et al. Isolation of single Pt atoms in a silver cluster: forming highly efficient silver-based cocatalysts for photocatalytic hydrogen evolution. Chem. Commun. 2017, 53, 9402-5.
63. Zhang, Y.; Chen, D.; Meng, W.; Li, S.; Meng, S. Plasmon-induced water splitting on Ag-alloyed Pt single-atom catalysts. Front. Chem. 2021, 9, 742794.
64. Kurashige, W.; Hayashi, R.; Wakamatsu, K.; et al. Atomic-level understanding of the effect of heteroatom doping of the cocatalyst on water-splitting activity in AuPd or AuPt alloy cluster-loaded BaLa4Ti4O15. ACS. Appl. Energy. Mater. 2019, 2, 4175-87.