REFERENCES

1. Fan, Y.; Zhou, W.; Qiu, X.; et al. Selective photocatalytic oxidation of methane by quantum-sized bismuth vanadate. Nat. Sustain. 2021, 4, 509-15.

2. Guo, X.; Fang, G.; Li, G.; et al. Direct, nonoxidative conversion of methane to ethylene, aromatics, and hydrogen. Science 2014, 344, 616-9.

3. Diao, J.; Zhang, T.; Xu, Z.; Guo, G. The atomic-level adjacent NiFe bimetallic catalyst significantly improves the activity and stability for plasma-involved dry reforming reaction of CH4 and CO2. Chem. Eng. J. 2023, 467, 143271.

4. Guene, L. B.; Geng, B.; Pan, R.; et al. Solar-driven photothermal catalytic CO2 conversion: a review. Rare. Met. 2024, 43, 2913-39.

5. Palmer, C.; Upham, D. C.; Smart, S.; Gordon, M. J.; Metiu, H.; Mcfarland, E. W. Dry reforming of methane catalysed by molten metal alloys. Nat. Catal. 2020, 3, 83-9.

6. Li, Y.; Liu, C.; Su, Y.; Zhao, Y.; Qiao, B. Maximized Ir atom utilization via downsizing active sites to single-atom scale for highly stable dry reforming of methane. Chem. Synth. 2024, 4, 61.

7. Schwach, P.; Pan, X.; Bao, X. Direct conversion of methane to value-added chemicals over heterogeneous catalysts: challenges and prospects. Chem. Rev. 2017, 117, 8497-520.

8. Li, X.; Tan, T.; Ji, W.; et al. Remarkably enhanced methane sensing performance at room temperature via constructing a self-assembled mulberry-like ZnO/SnO2 hierarchical structure. Energy. Environ. Mater. 2024, 7, e12624.

9. Meng, X.; Cui, X.; Rajan, N. P.; Yu, L.; Deng, D.; Bao, X. Direct methane conversion under mild condition by thermo-, electro-, or photocatalysis. Chem 2019, 5, 2296-325.

10. Saha, D.; Grappe, H. A.; Chakraborty, A.; Orkoulas, G. Postextraction separation, on-board storage, and catalytic conversion of methane in natural gas: a review. Chem. Rev. 2016, 116, 11436-99.

11. Yuliati, L.; Yoshida, H. Photocatalytic conversion of methane. Chem. Soc. Rev. 2008, 37, 1592-602.

12. Ma, J.; Mao, K.; Low, J.; et al. Efficient photoelectrochemical conversion of methane into ethylene glycol by WO3 nanobar arrays. Angew. Chem. Int. Ed. Engl. 2021, 60, 9357-61.

13. Shen, X.; Wu, D.; Fu, X.; Luo, J. Highly selective conversion of methane to ethanol over CuFe2O4-carbon nanotube catalysts at low temperature. Chin. Chem. Lett. 2022, 33, 390-3.

14. Choudhary, T. V.; Choudhary, V. R. Energy-efficient syngas production through catalytic oxy-methane reforming reactions. Angew. Chem. Int. Ed. Engl. 2008, 47, 1828-47.

15. Zhou, L.; Martirez, J. M. P.; Finzel, J.; et al. Light-driven methane dry reforming with single atomic site antenna-reactor plasmonic photocatalysts. Nat. Energy. 2020, 5, 61-70.

16. Wang, P.; Shi, R.; Zhao, Y.; et al. Selective photocatalytic oxidative coupling of methane via regulating methyl intermediates over metal/Zno nanoparticles. Angew. Chem. Int. Ed. Engl. 2023, 62, e202304301.

17. Song, H.; Meng, X.; Wang, S.; et al. direct and selective photocatalytic oxidation of CH4 to oxygenates with O2 on cocatalysts/ZnO at room temperature in water. J. Am. Chem. Soc. 2019, 141, 20507-15.

18. Iglesias-juez, A.; Beale, A. M.; Maaijen, K.; Weng, T. C.; Glatzel, P.; Weckhuysen, B. M. A combined in situ time-resolved UV-Vis, Raman and high-energy resolution X-ray absorption spectroscopy study on the deactivation behavior of Pt and PtSn propane dehydrogenation catalysts under industrial reaction conditions. J. Catal. 2010, 276, 268-79.

19. Marcinkowski, M. D.; Darby, M. T.; Liu, J.; et al. Pt/Cu single-atom alloys as coke-resistant catalysts for efficient C-H activation. Nat. Chem. 2018, 10, 325-32.

20. Sushkevich, V. L.; Palagin, D.; Ranocchiari, M.; Van Bokhoven, J. A. Selective anaerobic oxidation of methane enables direct synthesis of methanol. Science 2017, 356, 523-7.

21. Liang, J.; Liang, Z.; Zou, R.; Zhao, Y. Heterogeneous catalysis in zeolites, mesoporous silica, and metal-organic frameworks. Adv. Mater. 2017, 29.

22. Shan, J.; Li, M.; Allard, L. F.; Lee, S.; Flytzani-Stephanopoulos, M. Mild oxidation of methane to methanol or acetic acid on supported isolated rhodium catalysts. Nature 2017, 551, 605-8.

23. Shi, Y.; Zhou, Y.; Lou, Y.; Chen, Z.; Xiong, H.; Zhu, Y. Homogeneity of supported single-atom active sites boosting the selective catalytic transformations. Adv. Sci. (Weinh). 2022, 9, e2201520.

24. Liu, Z.; Shuai, J.; Xu, W.; Lu, X.; Xia, Q.; Zhou, D. Catalytic synthesis of niacin from 3-methyl-pyridine and 30%H2O2 by Cu-based zeolite. Chem. Synth. 2024, 4, 69.

25. Sun, Y.; Li, G.; Gong, Y.; Sun, Z.; Yao, H.; Zhou, X. Ag and TiO2 nanoparticles co-modified defective zeolite TS-1 for improved photocatalytic CO2 reduction. J. Hazard. Mater. 2021, 403, 124019.

26. Yu, B.; Cheng, L.; Wu, J.; et al. Surface hydroxyl group dominating aerobic oxidation of methane below room temperature. Energy. Environ. Sci. 2024, 17, 8127-39.

27. Yang, Z.; Yu, Q.; Wang, H.; Ge, Q.; Zhu, X. Ketonization of propionic acid over TS-1 and Ti-Beta zeolites: mechanism and effects of topology and hydrophobicity. J. Catal. 2024, 429, 115247.

28. Hu, W.; Liu, Y.; Withers, R. L.; et al. Electron-pinned defect-dipoles for high-performance colossal permittivity materials. Nat. Mater. 2013, 12, 821-6.

29. Ma, R.; Chen, W.; Wang, L.; et al. N-Oxyl radicals trapped on zeolite surface accelerate photocatalysis. ACS. Catal. 2019, 9, 10448-53.

30. Do, J. Y.; Son, N.; Chava, R. K.; et al. Plasmon-induced hot electron amplification and effective charge separation by Au nanoparticles sandwiched between copper titanium phosphate nanosheets and improved carbon dioxide conversion to methane. ACS. Sustainable. Chem. Eng. 2020, 8, 18646-60.

31. Chava, R. K.; Im, Y.; Kang, M. Internal electric field promoted charge separation via bismuth-based ternary heterojunctions with near-infrared light harvesting properties for efficient photoredox reactions. J. Mater. Chem. A. 2024, 12, 18498-511.

32. Do, J. Y.; Chava, R. K.; Mandari, K. K.; et al. Selective methane production from visible-light-driven photocatalytic carbon dioxide reduction using the surface plasmon resonance effect of superfine silver nanoparticles anchored on lithium titanium dioxide nanocubes (Ag@LixTiO2). Appl. Catal-B:. Environ. 2018, 237, 895-910.

33. Do, V. H.; Prabhu, P.; Jose, V.; et al. Pd-PdO nanodomains on amorphous Ru metallene oxide for high-performance multifunctional electrocatalysis. Adv. Mater. 2023, 35, e2208860.

34. Wang, T.; Li, F.; Huang, H.; et al. Porous Pd-PdO nanotubes for methanol electrooxidation. Adv. Funct. Mater. 2020, 30, 2000534.

35. Gong, Z.; Luo, L.; Wang, C.; Tang, J. Photocatalytic methane conversion to C1 oxygenates over palladium and oxygen vacancies co-decorated TiO2. Solar. RRL. 2022, 6, 2200335.

36. Jiang, Y.; Zhao, W.; Li, S.; et al. Elevating photooxidation of methane to formaldehyde via TiO2 crystal phase engineering. J. Am. Chem. Soc. 2022, 144, 15977-87.

37. Ma, J.; Zhu, C.; Mao, K.; et al. Sustainable methane utilization technology via photocatalytic halogenation with alkali halides. Nat. Commun. 2023, 14, 1410.

38. Bergonzi, I.; Mercury, L.; Brubach, J. B.; Roy, P. Gibbs free energy of liquid water derived from infrared measurements. Phys. Chem. Chem. Phys. 2014, 16, 24830-40.

39. Zheng, K.; Wu, Y.; Zhu, J.; et al. Room-temperature photooxidation of CH4 to CH3OH with nearly 100% selectivity over hetero-ZnO/Fe2O3 porous nanosheets. J. Am. Chem. Soc. 2022, 144, 12357-66.

40. Luo, L.; Gong, Z.; Xu, Y.; et al. Binary Au-Cu reaction sites decorated ZnO for Selective methane oxidation to C1 oxygenates with nearly 100% selectivity at room temperature. J. Am. Chem. Soc. 2022, 144, 740-50.

Chemical Synthesis
ISSN 2769-5247 (Online)

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/