REFERENCES

1. Nishioka, S.; Osterloh, F. E.; Wang, X.; Mallouk, T. E.; Maeda, K. Photocatalytic water splitting. Nat. Rev. Methods. Primers. 2023, 3, 42.

2. Sun, K.; Qian, Y.; Jiang, H. L. Metal-organic frameworks for photocatalytic water splitting and CO2 reduction. Angew. Chem. Int. Ed. Engl. 2023, 62, e202217565.

3. Lin, L.; Yu, Z.; Wang, X. Crystalline carbon nitride semiconductors for photocatalytic water splitting. Angew. Chem. Int. Ed. Engl. 2019, 58, 6164-75.

4. Bai, Y.; Zhou, Y.; Zhang, J.; et al. Homophase junction for promoting spatial charge separation in photocatalytic water splitting. ACS. Catal. 2019, 9, 3242-52.

5. Takata, T.; Jiang, J.; Sakata, Y.; et al. Photocatalytic water splitting with a quantum efficiency of almost unity. Nature 2020, 581, 411-4.

6. Zhang, Y.; Zhao, J.; Wang, H.; et al. Single-atom Cu anchored catalysts for photocatalytic renewable H2 production with a quantum efficiency of 56%. Nat. Commun. 2022, 13, 58.

7. Li, Y.; Peng, Y. K.; Hu, L.; et al. Photocatalytic water splitting by N-TiO2 on MgO (111) with exceptional quantum efficiencies at elevated temperatures. Nat. Commun. 2019, 10, 4421.

8. Lin, L.; Lin, Z.; Zhang, J.; et al. Molecular-level insights on the reactive facet of carbon nitride single crystals photocatalysing overall water splitting. Nat. Catal. 2020, 3, 649-55.

9. Wang, Y.; Huang, W.; Guo, S.; et al. Sulfur-deficient ZnIn2S4/oxygen-deficient WO3 hybrids with carbon layer bridges as a novel photothermal/photocatalytic integrated system for Z-scheme overall water splitting. Adv. Energy. Mater. 2021, 11, 2102452.

10. Dong, C.; Lu, S.; Yao, S.; et al. Colloidal synthesis of ultrathin monoclinic BiVO4 nanosheets for Z-scheme overall water splitting under visible light. ACS. Catal. 2018, 8, 8649-58.

11. Qi, Y.; Zhang, B.; Zhang, G.; et al. Efficient overall water splitting of a suspended photocatalyst boosted by metal-support interaction. Joule 2024, 8, 193-203.

12. Chen, S.; Ma, G.; Wang, Q.; et al. Metal selenide photocatalysts for visible-light-driven Z-scheme pure water splitting. J. Mater. Chem. A. 2019, 7, 7415-22.

13. He, Y.; Thorne, J.; Wu, C.; et al. What limits the performance of Ta3N5 for solar water splitting? Chem 2016, 1, 640-55.

14. Zhang, J.; Liu, K.; Zhang, B.; et al. Anisotropic charge migration on perovskite oxysulfide for boosting photocatalytic overall water splitting. J. Am. Chem. Soc. 2024, 146, 4068-77.

15. Jiang, L.; Yang, J.; Zhou, S.; et al. Strategies to extend near-infrared light harvest of polymer carbon nitride photocatalysts. Coord. Chem. Rev. 2021, 439, 213947.

16. Fujito, H.; Kunioku, H.; Kato, D.; et al. Layered perovskite oxychloride Bi4NbO8Cl: a stable visible light responsive photocatalyst for water splitting. J. Am. Chem. Soc. 2016, 138, 2082-5.

17. Lian, Z.; Sakamoto, M.; Kobayashi, Y.; et al. Anomalous photoinduced hole transport in type I core/mesoporous-shell nanocrystals for efficient photocatalytic H2 evolution. ACS. Nano. 2019, 13, 8356-63.

18. Wang, R.; He, H.; Shi, L.; et al. Unleashing photocarrier transport in mesoporous single-crystalline LaTiO2N for high-efficiency photocatalytic water splitting. Adv. Energy. Mater. 2024, 14, 2302996.

19. Ma, H.; Yang, X.; Tao, Z.; Liang, J.; Chen, J. Controllable synthesis and characterization of porous FeVO4 nanorods and nanoparticles. CrystEngComm 2011, 13, 897-901.

20. Zhao, Y.; Yao, K.; Cai, Q.; et al. Hydrothermal route to metastable phase FeVO4 ultrathin nanosheets with exposed {010} facets: synthesis, photocatalysis and gas-sensing. CrystEngComm 2014, 16, 270-6.

21. Sajid, M. M.; Zhai, H.; Shad, N. A.; et al. Photocatalytic performance of ferric vanadate (FeVO4) nanoparticles synthesized by hydrothermal method. Mater. Sci. Semicond. Process. 2021, 129, 105785.

22. Zhang, M.; Fang, Y.; Tay, Y. F.; et al. Nanostructured iron vanadate photoanodes with enhanced visible absorption and charge separation. ACS. Appl. Energy. Mater. 2022, 5, 3409-16.

23. Chen, H.; Zeng, J.; Chen, M.; et al. Improved visible light photocatalytic activity of mesoporous FeVO4 nanorods synthesized using a reactable ionic liquid. Chin. J. Catal. 2019, 40, 744-54.

24. Zhang, M.; Ma, Y.; Friedrich, D.; van de Krol, R.; Wong, L. H.; Abdi, F. F. Elucidation of the opto-electronic and photoelectrochemical properties of FeVO4 photoanodes for solar water oxidation. J. Mater. Chem. A. 2018, 6, 548-55.

25. Wang, W.; Zhang, Y.; Wang, L.; Bi, Y. Facile synthesis of Fe3+/Fe2+ self-doped nanoporous FeVO4 photoanodes for efficient solar water splitting. J. Mater. Chem. A. 2017, 5, 2478-82.

26. Alsulami, Q. A.; Rajeh, A.; Mannaa, M. A.; Albukhari, S. M.; Baamer, D. F. Preparation of highly efficient sunlight driven photodegradation of some organic pollutants and H2 evolution over rGO/FeVO4 nanocomposites. Int. J. Hydrog. Energy. 2021, 46, 27349-63.

27. Luangwanta, T.; Chachvalvutikul, A.; Kaowphong, S. Facile synthesis and enhanced photocatalytic activity of a novel FeVO4/Bi4O5Br2 heterojunction photocatalyst through step-scheme charge transfer mechanism. Colloid. Surface. A. 2021, 627, 127217.

28. Naqvi, S. Q.; Jennings, J. R.; Raza, S. A.; Soon, Y. W.; Liu, Y. Hole collection and surface kinetics in Mo-doped FeVO4 photoanodes during photoelectrochemical water oxidation. ACS. Appl. Energy. Mater. 2023, 6, 211-21.

29. Zeng, Q.; Fu, X.; Chang, S.; et al. Ordered Ti-doped FeVO4 nanoblock photoanode with improved charge properties for efficient solar water splitting. J. Colloid. Interface. Sci. 2021, 604, 562-7.

30. Zhang, M.; Pham, H. K.; Fang, Y.; Tay, Y. F.; Abdi, F. F.; Wong, L. H. The synergistic effect of cation mixing in mesoporous BixFe1-xVO4 heterojunction photoanodes for solar water splitting. J. Mater. Chem. A. 2019, 7, 14816-24.

31. Balu, S.; Chen, Y. L.; Chen, S. W.; Yang, T. C. K. Rational synthesis of BixFe1-xVO4 heterostructures impregnated sulfur-doped g-C3N4: a visible-light-driven type-II heterojunction photo(electro)catalyst for efficient photodegradation of roxarsone and photoelectrochemical OER reactions. Appl. Catal. B. Environ. 2022, 304, 120852.

32. Nguyen, T. H.; Zhang, M.; Septina, W.; et al. High throughput discovery of effective metal doping in FeVO4 for photoelectrochemical water splitting. Solar. RRL. 2020, 4, 2000437.

33. Dutta, D. P.; Ramakrishnan, M.; Roy, M.; Kumar, A. Effect of transition metal doping on the photocatalytic properties of FeVO4 nanoparticles. J. Photochem. Photobiol. A. 2017, 335, 102-11.

34. Kresse, G.; Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 1996, 6, 15-50.

35. Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B. 1999, 59, 1758.

36. Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865-8.

37. Anisimov, V. I.; Zaanen, J.; Andersen, O. K. Band theory and Mott insulators: Hubbard U instead of Stoner I. Phys. Rev. B. 1991, 44, 943.

38. Zhen, C.; Chen, X.; Chen, R.; et al. Liquid metal-embraced photoactive films for artificial photosynthesis. Nat. Commun. 2024, 15, 1672.

39. Shannon, R. D. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta. Cryst. A. 1976, 32, 751-67.

40. Thalluri, S. M.; Martinez, S. C.; Hussain, M.; et al. Evaluation of the parameters affecting the visible-light-induced photocatalytic activity of monoclinic BiVO4 for water oxidation. Ind. Eng. Chem. Res. 2013, 52, 17414-8.

41. Brown, I. D.; Wu, K. K. Empirical parameters for calculating cation–oxygen bond valences. Acta. Crystallogr. B. Struct. Sci. 1976, 32, 1957-9.

42. Wu, Y.; Tao, X.; Qing, Y.; et al. Cr-doped FeNi-P nanoparticles encapsulated into N-doped carbon nanotube as a robust bifunctional catalyst for efficient overall water splitting. Adv. Mater. 2019, 31, 1900178.

43. Marshall-Roth, T.; Libretto, N. J.; Wrobel, A. T.; et al. A pyridinic Fe-N4 macrocycle models the active sites in Fe/N-doped carbon electrocatalysts. Nat. Commun. 2020, 11, 5283.

44. Pei, H.; Peng, L.; Jiang, Z.; Zhang, Y.; Li, R.; Peng, T. Gradient-tuned VO4 vacancies in BiVO4 photoanode for boosting bulk hole transport and oxygen evolution reaction performance. Adv. Funct. Mater. 2024, 34, 2401122.

45. Wang, S.; He, T.; Chen, P.; et al. In situ formation of oxygen vacancies achieving near-complete charge separation in planar BiVO4 photoanodes. Adv. Mater. 2020, 32, 2001385.

46. Liu, M.; Zhang, G.; Liang, X.; et al. Rh/Cr2O3 and CoOx cocatalysts for efficient photocatalytic water splitting by poly (triazine imide) crystals. Angew. Chem. Int. Ed. Engl. 2023, 62, e202304694.

Chemical Synthesis
ISSN 2769-5247 (Online)

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/