REFERENCES

1. Balaraman, E.; Khaskin, E.; Leitus, G.; Milstein, D. Catalytic transformation of alcohols to carboxylic acid salts and H2 using water as the oxygen atom source. Nat. Chem. 2013, 5, 122-5.

2. Gellrich, U.; Khusnutdinova, J. R.; Leitus, G. M.; Milstein, D. Mechanistic investigations of the catalytic formation of lactams from amines and water with liberation of H2. J. Am. Chem. Soc. 2015, 137, 4851-9.

3. Liu, D.; Zhou, C.; Wang, G.; et al. Active Pd nanoclusters supported on nitrogen/amino co-functionalized carbon for highly efficient dehydrogenation of formic acid. Chem. Synth. 2023, 3, 24.

4. Sun, Z.; Zhao, H.; Yu, X.; Hu, J.; Chen, Z. Glucose photorefinery for sustainable hydrogen and value-added chemicals coproduction. Chem. Synth. 2024, 4, 4.

5. Truong-Phuoc, L.; Essyed, A.; Pham, X.; et al. Catalytic methane decomposition process on carbon-based catalyst under contactless induction heating. Chem. Synth. 2024, 4, 56.

6. Hu, P.; Ben-David, Y.; Milstein, D. General synthesis of amino acid salts from amino alcohols and basic water liberating H2. J. Am. Chem. Soc. 2016, 138, 6143-6.

7. Hu, P.; Diskin-Posner, Y.; Ben-David, Y.; Milstein, D. Reusable homogeneous catalytic system for hydrogen production from methanol and water. ACS. Catal. 2014, 4, 2649-52.

8. Khusnutdinova, J. R.; Ben-David, Y.; Milstein, D. Oxidant-free conversion of cyclic amines to lactams and H2 using water as the oxygen atom source. J. Am. Chem. Soc. 2014, 136, 2998-3001.

9. Nielsen, M.; Alberico, E.; Baumann, W.; et al. Low-temperature aqueous-phase methanol dehydrogenation to hydrogen and carbon dioxide. Nature 2013, 495, 85-9.

10. Brewster, T. P.; Goldberg, J. M.; Tran, J. C.; Heinekey, D. M.; Goldberg, K. I. High catalytic efficiency combined with high selectivity for the aldehyde–water shift reaction using (para-cymene)ruthenium precatalysts. ACS. Catal. 2016, 6, 6302-5.

11. Brewster, T. P.; Ou, W. C.; Tran, J. C.; et al. Iridium, rhodium, and ruthenium catalysts for the “aldehyde–water shift” reaction. ACS. Catal. 2014, 4, 3034-8.

12. Phearman, A. S.; Moore, J. M.; Bhagwandin, D. D.; Goldberg, J. M.; Heinekey, D. M.; Goldberg, K. I. (Hexamethylbenzene)Ru catalysts for the aldehyde-water shift reaction. Green. Chem. 2021, 23, 1609-15.

13. Kar, S.; Milstein, D. Oxidation of organic compounds using water as the oxidant with H2 liberation catalyzed by molecular metal complexes. Acc. Chem. Res. 2022, 55, 2304-15.

14. Alberico, E.; Sponholz, P.; Cordes, C.; et al. Selective hydrogen production from methanol with a defined iron pincer catalyst under mild conditions. Angew. Chem. Int. Ed. Engl. 2013, 52, 14162-6.

15. Fujita, K.; Tamura, R.; Tanaka, Y.; Yoshida, M.; Onoda, M.; Yamaguchi, R. Dehydrogenative oxidation of alcohols in aqueous media catalyzed by a water-soluble dicationic iridium complex bearing a functional N-heterocyclic carbene ligand without using base. ACS. Catal. 2017, 7, 7226-30.

16. Gunanathan, C.; Ben-David, Y.; Milstein, D. Direct synthesis of amides from alcohols and amines with liberation of H2. Science 2007, 317, 790-2.

17. Pitman, C. L.; Brereton, K. R.; Miller, A. J. Aqueous hydricity of late metal catalysts as a continuum tuned by ligands and the medium. J. Am. Chem. Soc. 2016, 138, 2252-60.

18. Sarbajna, A.; Dutta, I.; Daw, P.; et al. Catalytic conversion of alcohols to carboxylic acid salts and hydrogen with alkaline water. ACS. Catal. 2017, 7, 2786-90.

19. Zweifel, T.; Naubron, J. V.; Grützmacher, H. Catalyzed dehydrogenative coupling of primary alcohols with water, methanol, or amines. Angew. Chem. Int. Ed. Engl. 2009, 48, 559-63.

20. Chen, X.; Zhang, H.; Xia, Z.; Zhang, S.; Ma, Y. Base-free hydrogen generation from formaldehyde and water catalyzed by copper nanoparticles embedded on carbon sheets. Catal. Sci. Technol. 2019, 9, 783-8.

21. Qian, K.; Yan, Y.; Xi, S.; et al. Elucidating the strain-vacancy-activity relationship on structurally deformed Co@CoO nanosheets for aqueous phase reforming of formaldehyde. Small 2021, 17, e2102970.

22. Ren, Z.; Yang, Y.; Wang, S.; et al. Pt atomic clusters catalysts with local charge transfer towards selective oxidation of furfural. Appl. Catal. B. Environ. 2021, 295, 120290.

23. Zhang, S.; Ma, Y.; Zhang, H.; Zhou, X.; Chen, X.; Qu, Y. Additive-free, robust H2 production from H2O and DMF by dehydrogenation catalyzed by Cu/Cu2O formed in situ. Angew. Chem. Int. Ed. Engl. 2017, 56, 8245-9.

24. Fu, K.; Dong, L.; Liu, P.; et al. Immobilized enzymatic alcohol oxidation as a versatile reaction module for multienzyme cascades. Chem. Synth. 2023, 3, 49.

25. Libanori, M.; Santos, G.; Pereira, S.; et al. Organic benzoic acid modulates health and gut microbiota of Oreochromis niloticus. Aquaculture 2023, 570, 739409.

26. Xiao, C.; Zhang, L.; Hao, H.; Wang, W. High selective oxidation of benzyl alcohol to benzylaldehyde and benzoic acid with surface oxygen vacancies on W18O49/holey ultrathin g-C3N4 nanosheets. ACS. Sustainable. Chem. Eng. 2019, 7, 7268-76.

27. Yang, X.; Sun, R. Progress in transition-metal-catalyzed synthesis of benzo-fused oxygen- and nitrogen heterocyclic compounds from benzoic acids. Adv. Synth. Catal. 2023, 365, 124-41.

28. Zheng, C.; He, G.; Xiao, X.; et al. Selective photocatalytic oxidation of benzyl alcohol into benzaldehyde with high selectivity and conversion ratio over Bi4O5Br2 nanoflakes under blue LED irradiation. Appl. Catal. B. Environ. 2017, 205, 201-10.

29. Zhu, L.; Luo, Y.; He, Y.; et al. Selective catalytic synthesis of bio-based high value chemical of benzoic acid from xylan with Co2MnO4@MCM-41 catalyst. Mol. Catal. 2022, 517, 112063.

30. Wang, L.; Tang, R.; Kheradmand, A.; et al. Enhanced solar-driven benzaldehyde oxidation with simultaneous hydrogen production on Pt single-atom catalyst. Appl. Catal. B. Environ. 2021, 284, 119759.

31. Sattler, A.; Paccagnini, M.; Lanci, M. P.; Miseo, S.; Kliewer, C. E. Platinum catalyzed C–H activation and the effect of metal–support interactions. ACS. Catal. 2020, 10, 710-20.

32. Sun, C.; Wang, J.; Wang, J.; et al. Pt enhanced C–H bond activation for efficient and low-methane-selectivity hydrogenolysis of polyethylene over alloyed RuPt/ZrO2. Appl. Catal. B. Environ. Energy. 2024, 353, 124046.

33. Zeitler, H. E.; Phearman, A. S.; Gau, M. R.; Carroll, P. J.; Cundari, T. R.; Goldberg, K. I. Metal-ligand-anion cooperation in C-H bond formation at platinum(II). J. Am. Chem. Soc. 2022, 144, 14446-51.

34. Rodriguez, J. A.; Ma, S.; Liu, P.; Hrbek, J.; Evans, J.; Pérez, M. Activity of CeOx and TiOx nanoparticles grown on Au(111) in the water-gas shift reaction. Science 2007, 318, 1757-60.

35. Wang, H.; Wang, L.; Luo, Q.; et al. Two-dimensional manganese oxide on ceria for the catalytic partial oxidation of hydrocarbons. Chem. Synth. 2022, 2, 2.

36. Fu, Q.; Saltsburg, H.; Flytzani-Stephanopoulos, M. Active nonmetallic Au and Pt species on ceria-based water-gas shift catalysts. Science 2003, 301, 935-8.

37. Zhang, S.; Xia, Z.; Zou, Y.; Zhang, M.; Qu, Y. Spatial intimacy of binary active-sites for selective sequential hydrogenation-condensation of nitriles into secondary imines. Nat. Commun. 2021, 12, 3382.

38. Zhang, S.; Liu, Y.; Zhang, M.; Ma, Y.; Hu, J.; Qu, Y. Sustainable production of hydrogen with high purity from methanol and water at low temperatures. Nat. Commun. 2022, 13, 5527.

39. Zhang, S.; Xia, Z.; Ni, T.; Zhang, Z.; Ma, Y.; Qu, Y. Strong electronic metal-support interaction of Pt/CeO2 enables efficient and selective hydrogenation of quinolines at room temperature. J. Catal. 2018, 359, 101-11.

40. Mai, H. X.; Sun, L. D.; Zhang, Y. W.; et al. Shape-selective synthesis and oxygen storage behavior of ceria nanopolyhedra, nanorods, and nanocubes. J. Phys. Chem. B. 2005, 109, 24380-5.

41. Montini, T.; Melchionna, M.; Monai, M.; Fornasiero, P. Fundamentals and catalytic applications of CeO2-based materials. Chem. Rev. 2016, 116, 5987-6041.

42. Vivier, L.; Duprez, D. Ceria-based solid catalysts for organic chemistry. ChemSusChem 2010, 3, 654-78.

43. Lee, J.; Ryou, Y.; Chan, X.; Kim, T. J.; Kim, D. H. How Pt interacts with CeO2 under the reducing and oxidizing environments at elevated temperature: the origin of improved thermal stability of Pt/CeO2 compared to CeO2. J. Phys. Chem. C. 2016, 120, 25870-9.

44. Zhang, S.; Chang, C. R.; Huang, Z. Q.; et al. High catalytic activity and chemoselectivity of sub-nanometric Pd clusters on porous nanorods of CeO2 for hydrogenation of nitroarenes. J. Am. Chem. Soc. 2016, 138, 2629-37.

45. Haneda, M.; Watanabe, T.; Kamiuchi, N.; Ozawa, M. Effect of platinum dispersion on the catalytic activity of Pt/Al2O3 for the oxidation of carbon monoxide and propene. Appl. Catal. B. Environ. 2013, 142-3, 8-14.

46. Karp, E. M.; Silbaugh, T. L.; Crowe, M. C.; Campbell, C. T. Energetics of adsorbed methanol and methoxy on Pt(111) by microcalorimetry. J. Am. Chem. Soc. 2012, 134, 20388-95.

47. Garetto, T.; Rincón, E.; Apesteguı́a, C. Deep oxidation of propane on Pt-supported catalysts: drastic turnover rate enhancement using zeolite supports. Appl. Catal. B. Environ. 2004, 48, 167-74.

48. Kang, L.; Liu, X. Y.; Wang, A.; et al. Photo-thermo catalytic oxidation over a TiO2-WO3-supported platinum catalyst. Angew. Chem. Int. Ed. Engl. 2020, 59, 12909-16.

49. Liu, Y.; Zou, Y.; Wang, Y.; Ma, Y.; Zhang, S.; Qu, Y. Strong metal-support interactions between Pt and CeO2 for efficient methanol decomposition. Chem. Eng. J. 2023, 475, 146219.

50. Du, E.; Yang, J.; Huai, L.; et al. Quantifying interface-dependent active sites induced by strong metal–support interactions on Au/TiO2 in 2,5-bis(hydroxymethyl)furan oxidation. ACS. Catal. 2025, 15, 54-62.

51. Liao, Y.; Pan, Y.; Feng, X.; et al. Defective Auδ--Ov interfacial sites boost C-H bond activation for enhanced selective oxidation of amino alcohols to amino acids. J. Catal. 2024, 429, 115284.

52. Yan, H.; Yao, S.; Wang, J.; et al. Engineering Pt-Mn2O3 interface to boost selective oxidation of ethylene glycol to glycolic acid. Appl. Catal. B. Environ. 2021, 284, 119803.

Chemical Synthesis
ISSN 2769-5247 (Online)

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/