REFERENCES
1. Duan, Y. C.; Wen, L. L.; Gao, Y.; et al. Fluorescence, phosphorescence, or delayed fluorescence? - A theoretical exploration on the reason why a series of similar organic molecules exhibit different luminescence types. J. Phys. Chem. C. 2018, 122, 23091-101.
2. Fang, M.; Yang, J.; Li, Z. Light emission of organic luminogens: generation, mechanism and application. Prog. Mater. Sci. 2022, 125, 100914.
3. Ockwig, N. W.; Delgado-Friedrichs, O.; O’Keeffe, M.; Yaghi, O. M. Reticular chemistry: occurrence and taxonomy of nets and grammar for the design of frameworks. Acc. Chem. Res. 2005, 38, 176-82.
5. Xue, R.; Guo, H.; Wang, T.; et al. Fluorescence properties and analytical applications of covalent organic frameworks. Anal. Methods. 2017, 9, 3737-50.
6. Sun, Y. L.; Wang, Z.; Ren, C.; et al. Highly emissive organic cage in single-molecule and aggregate states by anchoring multiple aggregation-caused quenching dyes. ACS. Appl. Mater. Interfaces. 2022, 14, 53567-74.
7. Yang, X.; Ullah, Z.; Stoddart, J. F.; Yavuz, C. T. Porous organic cages. Chem. Rev. 2023, 123, 4602-34.
8. Wang, H.; Jin, Y.; Sun, N.; Zhang, W.; Jiang, J. Post-synthetic modification of porous organic cages. Chem. Soc. Rev. 2021, 50, 8874-86.
9. Hu, D.; Zhang, J.; Liu, M. Recent advances in the applications of porous organic cages. Chem. Commun. 2022, 58, 11333-46.
10. Tozawa, T.; Jones, J. T.; Swamy, S. I.; et al. Porous organic cages. Nat. Mater. 2009, 8, 973-8.
11. Wang, Z.; He, X.; Yong, T.; Miao, Y.; Zhang, C.; Zhong, T. B. Multicolor tunable polymeric nanoparticle from the tetraphenylethylene cage for temperature sensing in living cells. J. Am. Chem. Soc. 2020, 142, 512-9.
12. Chen, L.; Li, C.; Fu, E.; et al. A donor–acceptor cage for thermally activated delayed fluorescence: toward a new kind of TADF exciplex emitters. ACS. Mater. Lett. 2023, 5, 1450-5.
13. Acharyya, K.; Mukherjee, P. S. A fluorescent organic cage for picric acid detection. Chem. Commun. 2014, 50, 15788-91.
14. Dong, J.; Pan, Y.; Yang, K.; et al. Enhanced biological imaging via aggregation-induced emission active porous organic cages. ACS. Nano. 2022, 16, 2355-68.
15. Liyana Gunawardana, V. W.; Ward, C.; Wang, H.; et al. Crystalline nanoparticles of water-soluble covalent basket cages (CBCs) for encapsulation of anticancer drugs. Angew. Chem. Int. Ed. Engl. 2023, 62, e202306722.
16. Pérez-Márquez, L. A.; Perretti, M. D.; García-Rodríguez, R.; Lahoz, F.; Carrillo, R. A fluorescent cage for supramolecular sensing of 3-nitrotyrosine in human blood serum. Angew. Chem. Int. Ed. Engl. 2022, 61, e202205403.
17. Lin, C. Y.; Hsu, C. H.; Hung, C. M.; et al. Entropy-driven charge-transfer complexation yields thermally activated delayed fluorescence and highly efficient OLEDs. Nat. Chem. 2024, 16, 98-106.
18. Zahra, T.; Javeria, U.; Jamal, H.; Baig, M. M.; Akhtar, F.; Kamran, U. A review of biocompatible polymer-functionalized two-dimensional materials: emerging contenders for biosensors and bioelectronics applications. Anal. Chim. Acta. 2024, 1316, 342880.
19. Lustig, W. P.; Mukherjee, S.; Rudd, N. D.; Desai, A. V.; Li, J.; Ghosh, S. K. Metal-organic frameworks: functional luminescent and photonic materials for sensing applications. Chem. Soc. Rev. 2017, 46, 3242-85.
20. Wang, S.; Li, H.; Huang, H.; Cao, X.; Chen, X.; Cao, D. Porous organic polymers as a platform for sensing applications. Chem. Soc. Rev. 2022, 51, 2031-80.
21. Raja Lakshmi, P.; Nanjan, P.; Kannan, S.; Shanmugaraju, S. Recent advances in luminescent metal–organic frameworks (LMOFs) based fluorescent sensors for antibiotics. Coord. Chem. Rev. 2021, 435, 213793.
22. Dey, S.; Hasan, M.; Shukla, A.; et al. Thermally activated delayed fluorescence and room-temperature phosphorescence in asymmetric phenoxazine-quinoline (D2–A) conjugates and dual electroluminescence. J. Phys. Chem. C. 2022, 126, 5649-57.
23. Tao, Y.; Yuan, K.; Chen, T.; et al. Thermally activated delayed fluorescence materials towards the breakthrough of organoelectronics. Adv. Mater. 2014, 26, 7931-58.
24. Zhang, H.; Zhao, Z.; Turley, A. T.; et al. Aggregate science: from structures to properties. Adv. Mater. 2020, 32, e2001457.
25. Maji, S.; Samanta, J.; Samanta, K.; Natarajan, R. Emissive click cages. Chemistry 2023, 29, e202301985.
26. Qiu, F.; Chen, X.; Wang, W.; Su, K.; Yuan, D. Highly stable sp2 carbon-conjugated porous organic cages. CCS. Chem. 2024, 6, 149-56.
27. Montà-González, G.; Sancenón, F.; Martínez-Máñez, R.; Martí-Centelles, V. Purely covalent molecular cages and containers for guest encapsulation. Chem. Rev. 2022, 122, 13636-708.
28. Borse, R. A.; Tan, Y.; Yuan, D.; Wang, Y. Progress of porous organic cages in photo/electrocatalytic energy conversion and storage applications. Energy. Environ. Sci. 2024, 17, 1307-29.
29. Guo, Z.; Li, G.; Wang, H.; et al. Drum-like metallacages with size-dependent fluorescence: exploring the photophysics of tetraphenylethylene under locked conformations. J. Am. Chem. Soc. 2021, 143, 9215-21.
30. Liu, Y.; Guo, Z.; Guo, Y.; et al. Topological effect on fluorescence emission of tetraphenylethylene-based metallacages. Chinese. Chemical. Letters. 2023, 34, 108531.
31. Feng, H. T.; Yuan, Y. X.; Xiong, J. B.; Zheng, Y. S.; Tang, B. Z. Macrocycles and cages based on tetraphenylethylene with aggregation-induced emission effect. Chem. Soc. Rev. 2018, 47, 7452-76.
32. Wang, H.; Zhao, E.; Lam, J. W.; Tang, B. Z. AIE luminogens: emission brightened by aggregation. Mater. Today. 2015, 18, 365-77.
33. Zou, D.; Li, Z.; Long, D.; et al. Molecular cage with dual outputs of photochromism and luminescence both in solution and the solid state. ACS. Appl. Mater. Interfaces. 2023, 15, 13545-53.
34. Zheng, X.; Zhu, W.; Zhang, C.; et al. Self-assembly of a highly emissive pure organic imine-based stack for electroluminescence and cell imaging. J. Am. Chem. Soc. 2019, 141, 4704-10.
35. Li, Y.; Wang, K.; Feng, R.; et al. Reticular modulation of piezofluorochromic behaviors in organic molecular cages by replacing non-luminous components. Angew. Chem. Int. Ed. Engl. 2024, 63, e202403646.
36. Zhang, C.; Wang, Z.; Tan, L.; et al. A porous tricyclooxacalixarene cage based on tetraphenylethylene. Angew. Chem. Int. Ed. Engl. 2015, 54, 9244-8.
37. Duan, H.; Li, Y.; Li, Q.; et al. Host-guest recognition and fluorescence of a tetraphenylethene-based octacationic cage. Angew. Chem. Int. Ed. Engl. 2020, 59, 10101-10.
38. Duan, H.; Cao, F.; Hao, H.; Bian, H.; Cao, L. Efficient photoinduced energy and electron transfers in a tetraphenylethene-based octacationic cage through host-guest complexation. ACS. Appl. Mater. Interfaces. 2021, 13, 16837-45.
39. Feng, X.; Liao, P.; Jiang, J.; Shi, J.; Ke, Z.; Zhang, J. Perylene diimide based imine cages for inclusion of aromatic guest molecules and visible-light photocatalysis. ChemPhotoChem 2019, 3, 1014-9.
40. Konopka, M.; Cecot, P.; Ulrich, S.; Stefankiewicz, A. R. Tuning the solubility of self-assembled fluorescent aromatic cages using functionalized amino acid building blocks. Front. Chem. 2019, 7, 503.
41. Bhandari, P.; Ahmed, S.; Saha, R.; Mukherjee, P. S. Enhancing fluorescence in both solution and solid states induced by imine cage formation. Chemistry 2024, 30, e202303101.
42. Drożdż, W.; Bouillon, C.; Kotras, C.; et al. Generation of multicomponent molecular cages using simultaneous dynamic covalent reactions. Chemistry 2017, 23, 18010-8.
43. Wang, Z.; Ma, H.; Zhai, T. L.; et al. Networked cages for enhanced CO2 capture and sensing. Adv. Sci. 2018, 5, 1800141.
44. Cheng, L.; Liu, K.; Duan, Y.; et al. Adaptive chirality of an achiral cage: chirality transfer, induction, and circularly polarized luminescence through aqueous host–guest complexation. CCS. Chem. 2021, 3, 2749-63.
45. Xu, W.; Duan, H.; Chang, X.; et al. Polyanion and anionic surface monitoring in aqueous medium enabled by an ionic host-guest complex. Sens. Actuators. B. Chem. 2021, 340, 129916.
46. Duan, H.; Cao, F.; Zhang, M.; Gao, M.; Cao, L. On-off-on fluorescence detection for biomolecules by a fluorescent cage through host-guest complexation in water. Chin. Chem. Lett. 2022, 33, 2459-63.
47. Duan, Y.; Wang, J.; Cheng, L.; et al. A fluorescent, chirality-responsive, and water-soluble cage as a multifunctional molecular container for drug delivery. Org. Biomol. Chem. 2022, 20, 3998-4005.
48. Cao, F.; Duan, H.; Li, Q.; Cao, L. A tetraphenylethene-based hexacationic molecular cage with an open cavity. Chem. Commun. 2022, 58, 13389-92.
49. Duan, H.; Yang, T.; Li, Q.; Cao, F.; Wang, P.; Cao, L. Recognition and chirality sensing of guanosine-containing nucleotides by an achiral tetraphenylethene-based octacationic cage in water. Chin. Chem. Lett. 2024, 35, 108878.
50. Zhao, Y.; Niu, R.; Guo, F.; et al. White light emissive tetraphenylethene molecular cage-based hybrid nanoparticles for intracellular long-term imaging. ACS. Appl. Nano. Mater. 2024, 7, 14549-56.
51. Zhu, Z. H.; Zhang, D.; Chen, J.; et al. A biocompatible pure organic porous nanocage for enhanced photodynamic therapy. Mater. Horiz. 2023, 10, 4868-81.
52. An, L.; De, L. T. P.; Smith, P. T.; Narouz, M. R.; Chang, C. J. Synergistic porosity and charge effects in a supramolecular porphyrin cage promote efficient photocatalytic CO2 reduction. Angew. Chem. Int. Ed. Engl. 2023, 62, e202209396.
53. Kagan, N. E.; Mauzerall, D.; Marrifield, R. B. strati-Bisporphyrins. A novel cyclophane system. J. Am. Chem. Soc. 1977, 99, 5484-6.
54. Cen, T.; Wang, S.; Zhang, Z.; Wu, J.; Li, S. Flexible porphyrin cages and nanorings. J. Porphyrins. Phthalocyanines. 2018, 22, 726-38.
55. Liu, C.; Liu, K.; Wang, C.; et al. Elucidating heterogeneous photocatalytic superiority of microporous porphyrin organic cage. Nat. Commun. 2020, 11, 1047.
56. Hong, S.; Rohman, M. R.; Jia, J.; et al. Porphyrin boxes: rationally designed porous organic cages. Angew. Chem. Int. Ed. Engl. 2015, 54, 13241-4.
57. Chen, H.; Roy, I.; Myong, M. S.; et al. Triplet-triplet annihilation upconversion in a porphyrinic molecular container. J. Am. Chem. Soc. 2023, 145, 10061-70.
58. Shi, Y.; Cai, K.; Xiao, H.; et al. Selective extraction of C70 by a tetragonal prismatic porphyrin cage. J. Am. Chem. Soc. 2018, 140, 13835-42.
59. An, J. M.; Kim, S. H.; Kim, D. Recent advances in two-photon absorbing probes based on a functionalized dipolar naphthalene platform. Org. Biomol. Chem. , 2020, 4288-97.
60. Liu, C.; Jin, Y.; Qi, D.; et al. Enantioselective assembly and recognition of heterochiral porous organic cages deduced from binary chiral components. Chem. Sci. 2022, 13, 7014-20.
61. Huang, H. H.; Song, K. S.; Prescimone, A.; et al. Porous shape-persistent rylene imine cages with tunable optoelectronic properties and delayed fluorescence. Chem. Sci. 2021, 12, 5275-85.
62. Jia, F.; Hupatz, H.; Yang, L. P.; et al. Naphthocage: a flexible yet extremely strong binder for singly charged organic cations. J. Am. Chem. Soc. 2019, 141, 4468-73.
63. Jia, F.; Schröder, H. V.; Yang, L. P.; et al. Redox-responsive host-guest chemistry of a flexible cage with naphthalene walls. J. Am. Chem. Soc. 2020, 142, 3306-10.
64. Xu, Z.; Singh, N. J.; Kim, S. K.; Spring, D. R.; Kim, K. S.; Yoon, J. Induction-driven stabilization of the anion-π interaction in electron-rich aromatics as the key to fluoride inclusion in imidazolium-cage receptors. Chemistry 2011, 17, 1163-70.
65. Wang, F.; Wang, K.; Kong, Q.; et al. Recent studies focusing on the development of fluorescence probes for zinc ion. Coord. Chem. Rev. 2021, 429, 213636.
66. Sun, N.; Qi, D.; Jin, Y.; et al. Porous pyrene organic cage with unusual absorption bathochromic-shift enables visible light photocatalysis. CCS. Chem. 2022, 4, 2588-96.
67. Ge, C.; Shang, W.; Chen, Z.; et al. Self-assembled pure covalent tubes exhibiting circularly polarized luminescence. Angew. Chem. Int. Ed. Engl. 2024, 63, e202408056.
68. Li, Y.; Li, S.; Wang, M.; et al. Two pyrene-based cagearene constitutional isomers: synthesis, separation, and host–guest chemistry. Org. Chem. Front. 2024, 11, 4992-6.
69. Al Kelabi, D.; Dey, A.; Alimi, L. O.; Piwoński, H.; Habuchi, S.; Khashab, N. M. Photostable polymorphic organic cages for targeted live cell imaging. Chem. Sci. 2022, 13, 7341-6.
70. Dai, C.; Xu, Y.; Liu, B.; Gu, B. Organic cages with dual emission promoted by cage-like structure for ratiometric sensing of hypochlorous acid. Microchem. J. 2024, 204, 110967.
71. Dai, C.; Qian, H. L.; Yan, X. P. Facile room temperature synthesis of ultra-small sized porous organic cages for fluorescent sensing of copper ion in aqueous solution. J. Hazard. Mater. 2021, 416, 125860.
72. Dai, C.; Gu, B.; Tang, S. P.; Deng, P. H.; Liu, B. Fluorescent porous organic cage with good water solubility for ratiometric sensing of gold(III) ion in aqueous solution. Anal. Chim. Acta. 2022, 1192, 339376.
73. Mastalerz, M.; Schneider, M. W.; Oppel, I. M.; Presly, O. A salicylbisimine cage compound with high surface area and selective CO2/CH4 adsorption. Angew. Chem. Int. Ed. Engl. 2011, 50, 1046-51.
74. Schneider, M. W.; Oppel, I. M.; Ott, H.; et al. Periphery-substituted [4+6] salicylbisimine cage compounds with exceptionally high surface areas: influence of the molecular structure on nitrogen sorption properties. Chemistry 2012, 18, 836-47.
75. Alexandre, P. E.; Zhang, W. S.; Rominger, F.; Elbert, S. M.; Schröder, R. R.; Mastalerz, M. A robust porous quinoline cage: transformation of a [4+6] salicylimine cage by povarov cyclization. Angew. Chem. Int. Ed. Engl. 2020, 59, 19675-9.
76. Bureš, F. Fundamental aspects of property tuning in push–pull molecules. RSC. Adv. 2014, 4, 58826-51.
77. Šimon, P.; Klikar, M.; Burešová, Z.; et al. Centripetal triazine chromophores: towards efficient two-photon absorbers and highly emissive polyimide films. J. Mater. Chem. C. 2023, 11, 7252-61.
78. Hu, J.; Li, Y.; Zhu, H.; et al. Photophysical properties of intramolecular charge transfer in a tribranched donor-π-acceptor chromophore. Chemphyschem 2015, 16, 2357-65.
79. Padalkar, V. S.; Patil, V. S.; Sekar, N. Synthesis and photo-physical properties of fluorescent 1,3,5-triazine styryl derivatives. Chem. Cent. J. 2011, 5, 77.
80. Zhang, H.; Ao, Y. F.; Wang, D. X.; Wang, Q. Q. Triazine- and binaphthol-based chiral macrocycles and cages: synthesis, structure, and solid-state assembly. J. Org. Chem. 2022, 87, 3491-7.
81. Ding, H.; Yang, Y.; Li, B.; et al. Targeted synthesis of a large triazine-based [4+6] organic molecular cage: structure, porosity and gas separation. Chem. Commun. 2015, 51, 1976-9.
82. Liu, Z.; Deng, C.; Su, L.; et al. Efficient intramolecular charge-transfer fluorophores based on substituted triphenylphosphine donors. Angew. Chem. Int. Ed. Engl. 2021, 60, 15049-53.
83. Yu, Q.; Zhu, Q. Design and synthesis of triphenylphosphine-based donor-π-acceptor fluorophores with strong aggregation-induced emission and enantiomer-paired flower-like stacking. Dyes. Pigm. 2024, 223, 111903.
84. Gajula, R. K.; Mohanty, S.; Chakraborty, M.; Sarkar, M.; Prakash, M. J. An imine linked fluorescent covalent organic cage: the sensing of chloroform vapour and metal ions, and the detection of nitroaromatics. New. J. Chem. 2021, 45, 4810-22.
85. Ren, H.; Liu, C.; Ding, X.; Fu, X.; Wang, H.; Jiang, J. High fluorescence porous organic cage for sensing divalent palladium ion and encapsulating fine palladium nanoparticles. Chin. J. Chem. 2022, 40, 385-91.
86. Hu, Y.; Yao, J.; Xu, Z.; et al. Three-dimensional organic cage with narrowband delayed fluorescence. Sci. China. Chem. 2020, 63, 897-903.
87. Wang, Z. C.; Tan, Y. Z.; Yu, H.; Bao, W. H.; Tang, L. L.; Zeng, F. A benzothiadiazole-based self-assembled cage for cadmium detection. Molecules 2023, 28, 1841.
88. Zhang, R. F.; Hu, W. J.; Liu, Y. A.; et al. A shape-persistent cryptand for capturing polycyclic aromatic hydrocarbons. J. Org. Chem. 2016, 81, 5649-54.
89. Wang, Z.; Zhang, Q. P.; Guo, F.; et al. Self-similar chiral organic molecular cages. Nat. Commun. 2024, 15, 670.
90. Zhao, X.; Cui, H.; Guo, L.; et al. General and modular synthesis of covalent organic cages for efficient molecular recognition. Angew. Chem. Int. Ed. Engl. 2024, 63, e202411613.
91. Xu, Z.; Ye, Y.; Liu, Y.; Liu, H.; Jiang, S. Design and assembly of porous organic cages. Chem. Commun. 2024, 60, 2261-82.
92. Brand, M. C.; Trowell, H. G.; Pegg, J. T.; et al. Photoresponsive organic cages-computationally inspired discovery of azobenzene-derived organic cages. J. Am. Chem. Soc. 2024, 146, 30332-9.
93. Berardo, E.; Greenaway, R. L.; Miklitz, M.; Cooper, A. I.; Jelfs, K. E. Computational screening for nested organic cage complexes. Mol. Syst. Des. Eng. 2020, 5, 186-96.
94. Trzaskowski, B.; Martínez, J. P.; Sarwa, A.; Szyszko, B.; Goddard, W. A. 3rd. Argentophilic interactions, flexibility, and dynamics of pyrrole cages encapsulating silver(I) clusters. J. Phys. Chem. A. 2024, 128, 3339-50.
95. Tarzia, A.; Wolpert, E. H.; Jelfs, K. E.; Pavan, G. M. Systematic exploration of accessible topologies of cage molecules via minimalistic models. Chem. Sci. 2023, 14, 12506-17.
96. Santolini, V.; Miklitz, M.; Berardo, E.; Jelfs, K. E. Topological landscapes of porous organic cages. Nanoscale 2017, 9, 5280-98.
97. Berardo, E.; Turcani, L.; Miklitz, M.; Jelfs, K. E. An evolutionary algorithm for the discovery of porous organic cages. Chem. Sci. 2018, 9, 8513-27.
98. Turcani, L.; Tarzia, A.; Szczypiński, F. T.; Jelfs, K. E. stk: An extendable Python framework for automated molecular and supramolecular structure assembly and discovery. J. Chem. Phys. 2021, 154, 214102.
99. Turcani, L.; Berardo, E.; Jelfs, K. E. stk: A python toolkit for supramolecular assembly. J. Comput. Chem. 2018, 39, 1931-42.
100. Berardo, E.; Greenaway, R. L.; Turcani, L.; et al. Computationally-inspired discovery of an unsymmetrical porous organic cage. Nanoscale 2018, 10, 22381-8.
101. Jones, J. T.; Hasell, T.; Wu, X.; et al. Modular and predictable assembly of porous organic molecular crystals. Nature 2011, 474, 367-71.
102. Slater, A. G.; Reiss, P. S.; Pulido, A.; et al. Computationally-guided synthetic control over pore size in isostructural porous organic cages. ACS. Cent. Sci. 2017, 3, 734-42.
103. Del Regno, A.; Siperstein, F. R. Organic molecules of intrinsic microporosity: characterization of novel microporous materials. Micropor. Mesopor. Mat. 2013, 176, 55-63.
104. Evans, J. D.; Huang, D. M.; Hill, M. R.; et al. Molecular design of amorphous porous organic cages for enhanced gas storage. J. Phys. Chem. C. 2015, 119, 7746-54.
105. Abbott, L. J.; McDermott, A. G.; Del Regno, A.; et al. Characterizing the structure of organic molecules of intrinsic microporosity by molecular simulations and X-ray scattering. J. Phys. Chem. B. 2013, 117, 355-64.
106. Jiang, S.; Jelfs, K. E.; Holden, D.; et al. Molecular dynamics simulations of gas selectivity in amorphous porous molecular solids. J. Am. Chem. Soc. 2013, 135, 17818-30.
107. Miklitz, M.; Jelfs, K. E. pywindow: automated structural analysis of molecular pores. J. Chem. Inf. Model. 2018, 58, 2387-91.
108. Miklitz, M.; Jiang, S.; Clowes, R.; Briggs, M. E.; Cooper, A. I.; Jelfs, K. E. Computational screening of porous organic molecules for xenon/krypton separation. J. Phys. Chem. C. 2017, 121, 15211-22.
109. Chen, L.; Reiss, P. S.; Chong, S. Y.; et al. Separation of rare gases and chiral molecules by selective binding in porous organic cages. Nat. Mater. 2014, 13, 954-60.
110. Zhao, D.; Wang, Y.; Su, Q.; Li, L.; Zhou, J. Lysozyme adsorption on porous organic cages: a molecular simulation study. Langmuir 2020, 36, 12299-308.
111. Day, G. M.; Cooper, A. I. Energy-structure-function maps: cartography for materials discovery. Adv. Mater. 2018, 30, e1704944.
112. Gayathri, P.; Pannipara, M.; Al-Sehemi, A. G.; Anthony, S. P. Triphenylamine-based stimuli-responsive solid state fluorescent materials. New. J. Chem. 2020, 44, 8680-96.
113. Luo, W.; Wang, G. Photo-responsive fluorescent materials with aggregation-induced emission characteristics. Adv. Opt. Mater. 2020, 8, 2001362.
114. Hu, Y.; Li, L.; Wang, X.; Ma, D.; Huang, F. Three-dimensional organic cage with aggregation-induced delayed fluorescence. Chin. Chem. Lett. 2021, 32, 1017-9.
115. Yu, H.; Luo, Y.; Luo, S.; et al. A reusable fluorescent molecular self-assembly cage for simultaneous detection and recycling of silver(I) ion. Chem. Asian. J. 2024, 19, e202300872.
116. Ren, H.; Liu, C.; Yang, W.; Jiang, J. Sensitive and selective sensor based on porphyrin porous organic cage fluorescence towards copper ion. Dyes. Pigm. 2022, 200, 110117.
117. Zhao, X.; Xiong, S.; Zhang, J.; et al. A hexapyrrolic molecular cage and the anion-binding studies in chloroform. J. Mol. Struct. 2023, 1293, 136232.
118. Bian, L.; Tang, M.; Liu, J.; Liang, Y.; Wu, L.; Liu, Z. Luminescent chiral triangular prisms capable of forming double helices for detecting traces of acids and anion recognition. J. Mater. Chem. C. 2022, 10, 15394-9.
119. Pan, J.; Lin, W.; Bao, F.; et al. Multiple fluorescence color transitions mediated by anion-π interactions and C-F covalent bond formation. Chin. Chem. Lett. 2023, 34, 107519.
120. Della-Negra, O.; Kouassi, A. E.; Dutasta, J. P.; Saaidi, P. L.; Martinez, A. Fluorescence detection of the persistent organic pollutant chlordecone in water at environmental concentrations. Chemistry 2023, 29, e202203887.
121. Acharyya, K.; Chowdhury, A.; Mondal, B.; Chakraborty, S.; Mukherjee, P. S. Building block dependent morphology modulation of cage nanoparticles and recognition of nitroaromatics. Chemistry 2017, 23, 8482-90.
122. Sharma, V.; Chatterjee, N.; Srivastava, P.; De, D.; Bharadwaj, P. K. Peripheral fluorophore functionalized shape-persistent [2+3] organic cage for highly selective detection of picric acid. ChemistrySelect 2019, 4, 7991-5.
123. Tao, R.; Zhao, X.; Zhao, T.; et al. Cage-confinement induced emission enhancement. J. Phys. Chem. Lett. 2022, 13, 6604-11.
124. Fantozzi, N.; Pétuya, R.; Insuasty, A.; et al. Selective detection of choline in pseudophysiological medium with a fluorescent cage receptor. Org. Lett. 2023, 25, 2444-9.
125. Song, H.; Li, T. Y.; Pan, Y.; et al. Covalent organic nanocage with aggregation induced emission property and detection for Hg2+ as fluorescence sensors. Dyes. Pigm. 2023, 219, 111584.
126. Feng, H.; Zheng, X.; Gu, X.; et al. White-light emission of a binary light-harvesting platform based on an amphiphilic organic cage. Chem. Mater. 2018, 30, 1285-90.
127. Mahto, A. K.; Barik, S.; Mandal, A.; Pradhan, P.; Sarkar, M.; Madda, J. P. Breaking of J-aggregates in fluorescent covalent organic cage molecular materials through solid state grinding with metal salts: chemo-sensing and light-emitting diode applications. ACS. Appl. Opt. Mater. 2024, 2, 394-404.
128. Sarkar, K.; Ahmed, S.; Dastidar, P. Self-assembly of spherical organic molecules to form hollow vesicular structures in water for encapsulation of an anticancer drug and its release. Chem. Asian. J. 2019, 14, 1992-9.
129. Dong, Y.; Cheng, L.; Duan, Y.; et al. Dual responses of fluorescence and circular dichroism for antibiotics by a cationic cage in water. Synlett 2024, 35, 109-12.
130. Zhang, Y.; Luo, M.; Shi, X.; et al. Pyrgos[n]cages: Redefining antibacterial strategy against drug resistance. Sci. Adv. 2024, 10, eadp4872.





