REFERENCES
1. Ma, G.; Yang, N.; Xue, Y.; Zhou, G.; Wang, X. Ethylene glycol electrochemical reforming using ruthenium nanoparticle-decorated nickel phosphide ultrathin nanosheets. ACS. Appl. Mater. Interfaces. 2021, 13, 42763-72.
2. Wang, M.; Feng, C.; Mi, W.; et al. Defect-induced electron redistribution between Pt-N3S1 single atomic sites and Pt clusters for synergistic electrocatalytic hydrogen production with ultra-high mass activity. Adv. Funct. Mater. 2024, 34, 2309474.
3. Zhu, Y.; Chen, Y.; Feng, Y.; Meng, X.; Xia, J.; Zhang, G. Constructing Ru-O-TM bridge in NiFe-LDH enables high current hydrazine-assisted H2 production. Adv. Mater. 2024, 36, e2401694.
4. Li, Z.; Lin, G.; Wang, L.; et al. Seed-assisted formation of NiFe anode catalysts for anion exchange membrane water electrolysis at industrial-scale current density. Nat. Catal. 2024, 7, 944-52.
5. Zeng, Y.; Zhang, X.; Ai, C.; Wang, C.; Liu, Y.; Lin, S. Orbital engineering of C3N monolayer to design efficient synergistic sites electrocatalyst for boosting alkaline hydrogen evolution. Appl. Surf. Sci. 2022, 582, 152474.
6. Tüysüz, H. Alkaline water electrolysis for green hydrogen production. Acc. Chem. Res. 2024, 57, 558-67.
7. Chade, D.; Berlouis, L.; Infield, D.; Cruden, A.; Nielsen, P. T.; Mathiesen, T. Evaluation of Raney nickel electrodes prepared by atmospheric plasma spraying for alkaline water electrolysers. Int. J. Hydrogen. Energy. 2013, 38, 14380-90.
8. Ning, M.; Zhang, F.; Wu, L.; et al. Boosting efficient alkaline fresh water and seawater electrolysis via electrochemical reconstruction. Energy. Environ. Sci. 2022, 15, 3945-57.
9. Wang, X.; Liu, X.; Wu, S.; et al. Phosphorus vacancies enriched cobalt phosphide embedded in nitrogen doped carbon matrix enabling seawater splitting at ampere-level current density. Nano. Energy. 2023, 109, 108292.
10. Zhang, J.; Shang, X.; Ren, H.; et al. Modulation of inverse spinel Fe3O4 by phosphorus doping as an industrially promising electrocatalyst for hydrogen evolution. Adv. Mater. 2019, 31, e1905107.
11. Zhang, X.; Jin, M.; Jia, F.; et al. Noble-metal-free oxygen evolution reaction electrocatalysts working at high current densities over 1000 mA cm-2: from fundamental understanding to design principles. Energy. Environ. Mater. 2023, 6, e12457.
12. Sun, H.; Xu, X.; Kim, H.; Jung, W.; Zhou, W.; Shao, Z. Electrochemical water splitting: bridging the gaps between fundamental research and industrial applications. Energy. Environ. Mater. 2023, 6, e12441.
13. Li, X.; Han, S.; Qiao, Z.; Zeng, X.; Cao, D.; Chen, J. Ru monolayer island doped MoS2 catalysts for efficient hydrogen evolution reaction. Chem. Eng. J. 2023, 453, 139803.
14. Zhang, G.; Pei, J.; Wang, Y.; et al. Selective activation of lattice oxygen site through coordination engineering to boost the activity and stability of oxygen evolution reaction. Angew. Chem. Int. Ed. Engl. 2024, 63, e202407509.
15. Shi, Z.; Zhang, X.; Lin, X.; et al. Phase-dependent growth of Pt on MoS2 for highly efficient H2 evolution. Nature 2023, 621, 300-5.
16. Han, H.; Choi, H.; Mhin, S.; et al. Advantageous crystalline–amorphous phase boundary for enhanced electrochemical water oxidation. Energy. Environ. Sci. 2019, 12, 2443-54.
17. Li, W.; Niu, Y.; Wu, X.; Wu, F.; Li, T.; Hu, W. Heterostructured CoSe2/FeSe2 nanoparticles with abundant vacancies and strong electronic coupling supported on carbon nanorods for oxygen evolution electrocatalysis. ACS. Sustainable. Chem. Eng. 2020, 8, 4658-66.
18. Hu, M.; Qian, Y.; Yu, S.; et al. Amorphous MoS2 decorated Ni3S2 with a core-shell structure of urchin-like on nickel-foam efficient hydrogen evolution in acidic and alkaline media. Small 2024, 20, e2305948.
19. Shen, L.; Zhang, X.; He, H.; Fan, X.; Peng, W.; Li, Y. Template-assisted in situ synthesis of superaerophobic bimetallic MOF composites with tunable morphology for boosted oxygen evolution reaction. J. Colloid. Interface. Sci. 2024, 676, 238-48.
20. Wang, N.; Song, S.; Wu, W.; Deng, Z.; Tang, C. Bridging laboratory electrocatalysts with industrially relevant alkaline water electrolyzers. Adv. Energy. Mater. 2024, 14, 2303451.
21. Mehdi, M.; An, B.; Kim, H.; et al. Rational design of a stable Fe-rich Ni-Fe layered double hydroxide for the industrially relevant dynamic operation of alkaline water electrolyzers. Adv. Energy. Mater. 2023, 13, 2204403.
22. Soo, J. Z.; Riaz, A.; Kremer, F.; et al. Cobalt modification of nickel–iron hydroxide electrocatalysts: a pathway to enhanced oxygen evolution reaction. J. Mater. Chem. A. 2023, 11, 22941-50.
23. Sari, F. N. I.; Frenel, G.; Lee, A. C.; Huang, Y.; Su, Y.; Ting, J. Multi-high valence state metal doping in NiFe hydroxide toward superior oxygen evolution reaction activity. J. Mater. Chem. A. 2023, 11, 2985-95.
24. Zhang, B.; Xiao, C.; Xie, S.; Liang, J.; Chen, X.; Tang, Y. Iron–nickel nitride nanostructures in situ grown on surface-redox-etching nickel foam: efficient and ultrasustainable electrocatalysts for overall water splitting. Chem. Mater. 2016, 28, 6934-41.
25. Liu, Y.; Liang, X.; Gu, L.; et al. Corrosion engineering towards efficient oxygen evolution electrodes with stable catalytic activity for over 6000 hours. Nat. Commun. 2018, 9, 2609.
26. Lang, Z.; Song, G.; Wu, P.; Zheng, D. A corrosion-reconstructed and stabilized economical Fe-based catalyst for oxygen evolution. Nano. Res. 2023, 16, 2224-9.
27. Ma, Y.; Wang, J.; Liu, H.; et al. Expediting corrosion engineering for sulfur-doped, self-supporting Ni-Fe layered dihydroxide in efficient aqueous oxygen evolution. Catalysts 2024, 14, 394.
28. Jia, W.; Cao, X.; Chen, X.; et al. γ-MnO2 as an electron reservoir for RuO2 oxygen evolution catalyst in acidic media. Small 2024, 20, e2310464.
29. Zhao, W.; Xu, H.; Luan, H.; et al. NiFe layered double hydroxides grown on a corrosion-cell cathode for oxygen evolution electrocatalysis. Adv. Energy. Mater. 2022, 12, 2102372.
30. Liu, X.; Gong, M.; Deng, S.; et al. Transforming damage into benefit: corrosion engineering enabled electrocatalysts for water splitting. Adv. Funct. Mater. 2021, 31, 2009032.
31. Kitiphatpiboon, N.; Chen, M.; Feng, C.; et al. Highly durable FeNiSx/NiFe(OH)x electrocatalyst for selective oxygen evolution reaction in alkaline simulated seawater at high current densities. Int. J. Hydrogen. Energy. 2023, 48, 34255-71.
32. Ke, C.; Zhao, Q.; Zhang, Y.; Yang, X.; Xiao, W. Corrosion-engineered stereoscopic nano-microflower FeOOH for efficient electrocatalysis toward oxygen evolution reaction. J. Alloys. Compd. 2023, 955, 170131.
33. Liu, X.; Gong, M.; Xiao, D.; et al. Turning waste into treasure: regulating the oxygen corrosion on Fe foam for efficient electrocatalysis. Small 2020, 16, e2000663.
34. Duan, S.; Liu, Z.; Zhuo, H.; et al. Hydrochloric acid corrosion induced bifunctional free-standing NiFe hydroxide nanosheets towards high-performance alkaline seawater splitting. Nanoscale 2020, 12, 21743-9.
35. Li, Z.; Zhang, X.; Zhang, Z.; Chen, P.; Zhang, Y.; Dong, X. Dual-metal hydroxide@oxide heterojunction catalyst constructed via corrosion engineering for large-current oxygen evolution reaction. Appl. Catal. B. Environ. 2023, 325, 122311.
36. Guo, X.; Zhang, F.; Evans, D. G.; Duan, X. Layered double hydroxide films: synthesis, properties and applications. Chem. Commun. 2010, 46, 5197-210.
37. Wang, Y.; Zhuang, Y.; Yang, G.; Dong, C.; He, M. Unraveling the dynamic reconstruction of active Co(IV)-O sites on ultrathin amorphous cobalt-iron hydroxide nanosheets for efficient oxygen-evolving. Small 2024, 20, e2404205.
38. Lee, J.; Jung, H.; Park, Y. S.; et al. Corrosion-engineered bimetallic oxide electrode as anode for high-efficiency anion exchange membrane water electrolyzer. Chem. Eng. J. 2021, 420, 127670.
39. Zhang, Z. H.; Yu, Z. R.; Zhang, Y.; et al. Construction of desert rose flower-shaped NiFe LDH-Ni3S2 heterostructures via seawater corrosion engineering for efficient water-urea splitting and seawater utilization. J. Mater. Chem. A. 2023, 11, 19578-90.
40. Liu, X.; Guo, X.; Gong, M.; et al. Regulated iron corrosion towards fabricating large-area self-supporting electrodes for an efficient oxygen evolution reaction. J. Mater. Chem. A. 2021, 9, 23188-98.
41. Deng, J.; Wang, Z.; Yang, H.; et al. Superfast hydrous-molten salt erosion to fabricate large-size self-supported electrodes for industrial-level current OER. Chem. Eng. J. 2024, 482, 148887.
42. Liu, S.; Ma, L.; Li, J. Facile preparation of amorphous NiFe hydroxide by corrosion engineering for electrocatalytic water and urea oxidation. J. Alloys. Compd. 2023, 936, 168271.
43. Li, X.; Liu, C.; Fang, Z.; Xu, L.; Lu, C.; Hou, W. Ultrafast room-temperature synthesis of self-supported NiFe-layered double hydroxide as large-current-density oxygen evolution electrocatalyst. Small 2022, 18, e2104354.
44. Xiao, Y.; Dastafkan, K.; Li, Y.; et al. Oxygen corrosion engineering of nonprecious ternary metal hydroxides toward oxygen evolution reaction. ACS. Sustain. Chem. Eng. 2022, 10, 8597-604.
45. Liu, X.; Wang, X.; Gong, M.; Wang, R.; Hao, X.; Chen, Y. Corrosion strategy for synthesizing Ru-decorated FeOOH nanoneedles as advanced hydrogen evolution reaction catalysts. J. Alloys. Compd. 2023, 958, 170430.
46. Gong, Z.; Wang, X.; Pi, W.; et al. Lattice contraction-driven design of highly efficient and stable O–NiFe layered double hydroxide electrocatalysts for water oxidation. Mater. Today. Phys. 2024, 43, 101399.
47. Xia, J.; Zhang, J.; Huang, K.; et al. In situ growth of an active catalytic layer on commercial stainless steel via a hydrothermal-assisted corrosion process for efficient oxygen evolution reaction. J. Mater. Chem. A. 2024, 12, 19008-17.
48. Zhang, Y.; Yang, C.; Zhao, L.; Zhang, J. Study on the electrochemical corrosion behavior of 304 stainless steel in chloride ion solutions. Int. J. Electrochem. Sci. 2021, 16, 210251.
49. Wu, Z.; Zhao, Y.; Wu, H.; et al. Corrosion engineering on iron foam toward efficiently electrocatalytic overall water splitting powered by sustainable energy. Adv. Funct. Mater. 2021, 31, 2010437.
50. Zhao, Y.; Gao, Y.; Chen, Z.; et al. Trifle Pt coupled with NiFe hydroxide synthesized via corrosion engineering to boost the cleavage of water molecule for alkaline water-splitting. Appl. Catal. B. Environ. 2021, 297, 120395.
51. Zhang, Z.; Zhang, Y.; Barras, A.; et al. Preparation of flower-shaped co-Fe layer double hydroxide nanosheets loaded with Pt nanoparticles by corrosion engineering for efficient electrocatalytic water splitting. ACS. Appl. Energy. Mater. 2022, 5, 15269-81.
52. Zhang, X.; Zhu, H.; Zuo, Z.; et al. Robust and efficient Iron-Based electrodes for hydrogen production from seawater at high current density above 1000 mA cm-2. Chem. Eng. J. 2024, 490, 151705.
53. Guo, Y.; Xue, M.; Pan, Z.; Huo, X. L.; Bao, N.; Zhou, Q. Acid etching followed by water soaking: a top-down strategy to induce highly reactive substrates for electrocatalysis. Chem. Commun. 2023, 59, 3233-6.
54. Haq, T. U.; Arooj, M.; Tahir, A.; Haik, Y. SOx functionalized NiOOH nanosheets embedded in Ni(OH)2 microarray for high-efficiency seawater oxidation. Small 2024, 20, e2305694.
55. Wang, P.; Lin, Y.; Xu, Q.; et al. Acid-corrosion-induced hollow-structured NiFe-layered double hydroxide electrocatalysts for efficient water oxidation. ACS. Appl. Energy. Mater. 2021, 4, 9022-31.
56. Sun, C.; Song, Q.; Lei, J.; Li, D.; Li, L.; Pan, F. Corrosion of iron-nickel foam to in situ fabricate amorphous FeNi (Oxy)hydroxide nanosheets as highly efficient electrocatalysts for oxygen evolution reaction. ACS. Appl. Energy. Mater. 2021, 4, 8791-800.
57. Yue, Y. Y.; Liu, C. J.; Shi, P. Y.; Jiang, M. F. Corrosion of hot-rolled 430 stainless steel in HCl-based solution. Corros. Eng. Sci. Technol. 2016, 51, 581-7.
58. Fortes, J. C.; Terrones-Saeta, J. M.; Luís, A. T.; Santisteban, M.; Grande, J. A. Corrosion effect in carbon steel: process modeling using fuzzy logic tools. Processes 2023, 11, 2104.
59. Zhou, Y.; Gao, J.; Ju, M.; et al. Combustion growth of NiFe layered double hydroxide for efficient and durable oxygen evolution reaction. ACS. Appl. Mater. Interfaces. 2024, 16, 28526-36.
60. Du, S.; Ren, Z.; Wang, X.; Wu, J.; Meng, H.; Fu, H. Controlled atmosphere corrosion engineering toward inhomogeneous NiFe-LDH for energetic oxygen evolution. ACS. Nano. 2022, 16, 7794-803.
61. Song, Y. F.; Zhang, Z. Y.; Tian, H.; Bian, L.; Bai, Y.; Wang, Z. L. Corrosion engineering towards NiFe-layered double hydroxide macroporous arrays with enhanced activity and stability for oxygen evolution reaction. Chemistry 2023, 29, e202301124.
62. Yang, X.; Chen, Q.; Wang, C.; Hou, C.; Chen, Y. Substrate participation ultrafast synthesis of amorphous NiFe nanosheets on iron foam at room temperature toward highly efficient oxygen evolution reaction. J. Energy. Chem. 2019, 35, 197-203.
63. Wang, J.; Teng, X.; Niu, Y.; et al. In situ autologous growth of self-supporting NiFe-based nanosheets on nickel foam as an efficient electrocatalyst for the oxygen evolution reaction. RSC. Adv. 2019, 9, 21679-84.
64. Tu, Z.; Liu, X.; Xiong, D.; et al. Ultrafast room-temperature activation of nickel foams as highly efficient electrocatalysts. Chem. Eng. J. 2023, 475, 146253.
65. Ren, J. T.; Yuan, G. G.; Weng, C. C.; Chen, L.; Yuan, Z. Y. Uniquely integrated Fe-doped Ni(OH)2 nanosheets for highly efficient oxygen and hydrogen evolution reactions. Nanoscale 2018, 10, 10620-8.
66. Chen, M.; Li, W.; Lu, Y.; et al. Corrosion engineering approach to rapidly prepare Ni(Fe)OOH/Ni(Fe)Sx nanosheet arrays for efficient water oxidation. J. Mater. Chem. A. 2023, 11, 4608-18.
67. Yu, L.; Wu, L.; Mcelhenny, B.; et al. Ultrafast room-temperature synthesis of porous S-doped Ni/Fe (oxy)hydroxide electrodes for oxygen evolution catalysis in seawater splitting. Energy. Environ. Sci. 2020, 13, 3439-46.
68. Chen, H.; Li, J.; Shen, Y.; et al. Room temperature, fast fabrication of square meter-sized oxygen evolution electrode toward industrial alkaline electrolyzer. Appl. Catal. B. Environ. 2022, 316, 121605.
69. Bai, X.; Zhang, M.; Shen, Y.; et al. Room-temperature, meter-scale synthesis of heazlewoodite-based nanoarray electrodes for alkaline water electrolysis. Adv. Funct. Mater. 2024, 34, 2400979.
70. Wang, L.; Ma, M.; Zhang, C.; et al. Manipulating the microenvironment of single atoms by switching support crystallinity for industrial hydrogen evolution. Angew. Chem. Int. Ed. Engl. 2024, 63, e202317220.
71. Song, S.; Wang, Y.; Tian, P.; Zang, J. Activating lattice oxygen in local amorphous S-modified NiFe-LDH ultrathin nanosheets toward superior alkaline/natural seawater oxygen evolution. J. Colloid. Interface. Sci. 2025, 677, 853-62.
72. Qi, J.; Jiang, G.; Wan, Y.; Liu, J.; Pi, F. Nanomaterials-modulated Fenton reactions: Strategies, chemodynamic therapy and future trends. Chem. Eng. J. 2023, 466, 142960.
73. Jia, S.; Shen, Q.; Yong, Y.; Mi, J. In situ modification of metal electrode by integrated microbial corrosion and microbial mineralization using Shewanella oneidensis for efficient oxygen evolution. Catal. Sci. Technol. 2023, 13, 2447-57.
74. Yang, H.; Dong, C.; Wang, H.; et al. Constructing nickel-iron oxyhydroxides integrated with iron oxides by microorganism corrosion for oxygen evolution. Proc. Natl. Acad. Sci. U. S. A. 2022, 119, e2202812119.
75. Zhang, X.; Chen, Y.; Ye, Z.; et al. Magnetic field-assisted microbial corrosion construction iron sulfides incorporated nickel-iron hydroxide towards efficient oxygen evolution. Chin. J. Struct. Chem. 2024, 43, 100200.
76. Zhang, W.; Ying, J.; Liu, H. Biomineralization of sulfate-reducing bacteria in situ-induced preparation of nano Fe2O3-Fe(Ni)S/C as high-efficiency oxygen evolution electrocatalyst. Small 2024, 20, e2307808.
77. Yang, H.; Gong, L.; Wang, H.; et al. Preparation of nickel-iron hydroxides by microorganism corrosion for efficient oxygen evolution. Nat. Commun. 2020, 11, 5075.
78. Zhang, W.; Liu, H.; Ying, J.; Liu, H. Preparation of nickel–iron sulfide/oxide nanocomposites by biomineralization of sulfate-reducing bacterium for efficient oxygen evolution. Chem. Eng. J. 2023, 475, 146211.
79. Li, J.; Mi, J.; Qing, Z.; et al. In-situ modification of nickel electrode by coupling the microbial corrosion and microbial reduction using Shewanella oneidensis for enhanced electrocatalysis. Chem. Eng. J. 2024, 495, 153176.
80. Meharban, F.; Lin, C.; Wu, X.; et al. Scaling up stability: navigating from lab insights to robust oxygen evolution electrocatalysts for industrial water electrolysis. Adv. Energy. Mater. 2024, 14, 2402886.
81. Wang, M.; Sun, X.; Janssen, P.; Tang, S.; Tan, Z. Responses of methane production and fermentation pathways to the increased dissolved hydrogen concentration generated by eight substrates in in vitro ruminal cultures. Anim. Feed. Sci. Technol. 2014, 194, 1-11.
82. Zhao, S.; Wang, S.; Qiu, C.; et al. Enhanced electrocatalytic alcohol oxidation mediated with ultra-low concentration of aminoxyl radicals via an Intermediate-Rich local microenvironment. Chem. Eng. Sci. 2024, 286, 119653.
83. Xiao, A.; Ban, F.; Tong, X.; Ye, C.; Wei, Y. Electrochemical treatment of azo dye wastewater by dynamic flow diaphragm system: response surface methodology optimization and energy consumption analysis. Desalination. Water. Treat. 2024, 320, 100615.
84. Zhang, K.; Liang, X.; Wang, L.; et al. Status and perspectives of key materials for PEM electrolyzer. Nano. Res. Energy. 2022, 1, e9120032.
85. Li, T.; Liu, W.; Xin, H.; et al. Large-scale and simple synthesis of NiFe(OH)x electrode derived from raney Ni precursor for efficient alkaline water electrolyzer. Catalysts 2024, 14, 296.