REFERENCES

1. Ramteke, A. V.; Bhatia, D.; Pant, K. Conversion of light cycle oil to benzene and alkylated monoaromatics over monometallic and bimetallic CoMo catalysts in the presence of hydrogen donor. Fuel 2023, 342, 127737.

2. Corma, A.; González-Alfaro, V.; Orchillés, A. Decalin and tetralin as probe molecules for cracking and hydrotreating the light cycle oil. J. Catal. 2001, 200, 34-44.

3. Peng, C.; Huang, X.; Duan, X.; et al. Direct production of high octane gasoline and ULSD blend stocks by LCO hydrocracking. Catal. Today. 2016, 271, 149-53.

4. Zhang, L.; Tang, X.; Li, J.; Yang, J.; Dai, G. Extraction and separation of polycyclic aromatic hydrocarbons from catalytic cracking diesel. J. Chem. Eng. Data. 2023, 68, 393-404.

5. Miao, P.; Miao, J.; Guo, Y.; Lin, C.; Zhu, X.; Li, C. Efficient conversion of light cycle oil into gasoline with a combined hydrogenation and catalytic cracking process: effect of pre-distillation. Energy. Fuels. 2020, 34, 12505-16.

6. Xin, L.; Liu, X.; Chen, X.; Feng, X.; Liu, Y.; Yang, C. Efficient conversion of light cycle oil into high-octane-number gasoline and light olefins over a mesoporous ZSM-5 catalyst. Energy. Fuels. 2017, 31, 6968-76.

7. Laredo, G. C.; Pérez-Romo, P.; Escobar, J.; Garcia-Gutierrez, J. L.; Vega-Merino, P. M. Light cycle oil upgrading to benzene, toluene, and xylenes by hydrocracking: studies using model mixtures. Ind. Eng. Chem. Res. 2017, 56, 10939-48.

8. Oh, Y.; Noh, H.; Park, H.; Han, H.; Nguyen, T.; Lee, J. K. Molecular-size selective hydroconversion of FCC light cycle oil into petrochemical light aromatic hydrocarbons. Catal. Today. 2020, 352, 329-36.

9. Cao, Z.; Zhang, X.; Xu, C.; et al. Selective hydrocracking of light cycle oil into high-octane gasoline over bi-functional catalysts. J. Energy. Chem. 2021, 52, 41-50.

10. Oh, Y.; Shin, J.; Noh, H.; et al. Selective hydrotreating and hydrocracking of FCC light cycle oil into high-value light aromatic hydrocarbons. Appl. Catal. A. Gen. 2019, 577, 86-98.

11. Escalona, G.; Rai, A.; Betancourt, P.; Sinha, A. K. Selective poly-aromatics saturation and ring opening during hydroprocessing of light cycle oil over sulfided Ni-Mo/SiO2-Al2O3 catalyst. Fuel 2018, 219, 270-8.

12. Chen, F.; Zhang, G.; Weng, X.; et al. High value utilization of inferior diesel for BTX production: mechanisms, catalysts, conditions and challenges. Appl. Catal. A. Gen. 2021, 616, 118095.

13. Qi, L.; Peng, C.; Cheng, Z.; Zhou, Z. Structure-performance relationship of NiMo/Al2O3-HY catalysts in selective hydrocracking of poly-aromatics to mono-aromatics. Chem. Eng. Sci. 2022, 263, 118121.

14. Peng, C.; Zhou, Z.; Cheng, Z.; Fang, X. Upgrading of light cycle oil to high-octane gasoline through selective hydrocracking over non-noble metal bifunctional catalysts. Energy. Fuels. 2019, 33, 1090-7.

15. Du, H.; Fairbridge, C.; Yang, H.; Ring, Z. The chemistry of selective ring-opening catalysts. Appl. Catal. A. Gen. 2005, 294, 1-21.

16. Santikunaporn, M.; Herrera, J.; Jongpatiwut, S.; Resasco, D.; Alvarez, W.; Sughrue, E. Ring opening of decalin and tetralin on HY and Pt/HY zeolite catalysts. J. Catal. 2004, 228, 100-13.

17. Lee, J.; Choi, Y.; Shin, J.; Lee, J. K. Selective hydrocracking of tetralin for light aromatic hydrocarbons. Catal. Today. 2016, 265, 144-53.

18. Arribas, M. A.; Martínez, A.; Sastre, G. Simultaneous hydrogenation and ring opening of aromatics for diesel upgrading on Pt/zeolite catalysts. The influence of zeolite pore topology and reactant on catalyst performance. Stud. Surf. Sci. Catal. 2002, 142, 1015-22.

19. Arribas, M.; Corma, A.; Díaz-cabañas, M.; Martínez, A. Hydrogenation and ring opening of Tetralin over bifunctional catalysts based on the new ITQ-21 zeolite. Appl. Catal. A. Gen. 2004, 273, 277-86.

20. Qi, J.; Guo, Y.; Jia, H.; et al. Unpredictable properties of industrial HY zeolite for tetralin hydrocracking. Fuel. Proc. Technol. 2023, 240, 107586.

21. Sharma, P.; Iguchi, Y.; Sekine, Y.; Kikuchi, E.; Matsukata, M. 42 Hydroisomerization of tetralin on zeolite beta: influence of crystal size. Stud. Surf. Sci. Catal. 2003, 145, 219-22.

22. Nesterenko, N.; Thibault-Starzyk, F.; Montouillout, V.; et al. Accessibility of the acid sites in dealuminated small-port mordenites studied by FTIR of co-adsorbed alkylpyridines and CO. Micropor. Mesopor. Mat. 2004, 71, 157-66.

23. Mlekodaj, K.; Tarach, K.; Datka, J.; Góra-Marek, K.; Makowski, W. Porosity and accessibility of acid sites in desilicated ZSM-5 zeolites studied using adsorption of probe molecules. Micropor. Mesopor. Mat. 2014, 183, 54-61.

24. Thibault-Starzyk, F.; Stan, I.; Abelló, S.; et al. Quantification of enhanced acid site accessibility in hierarchical zeolites - The accessibility index. J. Catal. 2009, 264, 11-4.

25. Zhang, L.; Hu, Q.; Qin, Y.; et al. Optimizing the accessibility of zeolite Y on FCC catalyst to improve heavy oil conversion capacity. Micropor. Mesopor. Mat. 2023, 359, 112627.

26. Lakiss, L.; Vicente, A.; Gilson, J. P.; et al. Probing the Brønsted acidity of the external surface of faujasite-type zeolites. Chemphyschem 2020, 21, 1873-81.

Chemical Synthesis
ISSN 2769-5247 (Online)

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/