REFERENCES

1. Stephen P. Storage requirements for AI, ML and analytics in 2022. Available from: https://www.computerweekly.com/feature/Storage-requirements-for-AI-ML-and-analytics-in-2022. [Last accessed on 12 Dec 2024].

2. Hsu WH, Victora RH. Heat-assisted magnetic recording - micromagnetic modeling of recording media and areal density: a review. J Magn Magn Mater. 2022;563:169973.

3. Heat assisted magnetic recording (HAMR). Available from: https://www.seagate.com/au/en/innovation/hamr/. [Last accessed on 6 Sep 2024].

4. Thomas C. A new phase of magnetic recording. Available from: https://www.forbes.com/sites/tomcoughlin/2024/01/20/a-new-phase-of-magnetic-recording/?sh=6572f395129d. [Last accessed on 6 Sep 2024].

5. Ross C. Patterned magnetic recording media. Annu Rev Mater Res. 2001;31:203-235.

6. Quaade UJ, Stokbro K, Lin R, Grey F. Single-atom reversible recording at room temperature. Nanotechnology. 2001;12:265-272.

7. Morgenstern K, Lorente N, Rieder KH. Controlled manipulation of single atoms and small molecules using the scanning tunnelling microscope. Physica Status Solidi. 2013;250:1671-1751.

8. Hirjibehedin CF, Lin CY, Otte AF, et al. Large magnetic anisotropy of a single atomic spin embedded in a surface molecular network. Science. 2007;317:1199-1203.

9. Meier F, Zhou L, Wiebe J, Wiesendanger R. Revealing magnetic interactions from single-atom magnetization curves. Science. 2008;320:82-86.

10. Khajetoorians AA, Lounis S, Chilian B, et al. Itinerant nature of atom-magnetization excitation by tunneling electrons. Phys Rev Lett. 2011;106:037205.

11. Donati F, Dubout Q, Autès G, et al. Magnetic moment and anisotropy of individual Co atoms on graphene. Phys Rev Lett. 2013;111:236801.

12. Rau IG, Baumann S, Rusponi S, et al. Reaching the magnetic anisotropy limit of a 3D metal atom. Science. 2014;344:988-992.

13. Donati F, Rusponi S, Stepanow S, et al. Magnetic remanence in single atoms. Science. 2016;352:318-321.

14. Natterer FD, Donati F, Patthey F, Brune H. Thermal and magnetic-field stability of holmium single-atom magnets. Phys Rev Lett. 2018;121:027201.

15. Li M, Cai B, Tian R, et al. Vanadium doped 1T MoS2 nanosheets for highly efficient electrocatalytic hydrogen evolution in both acidic and alkaline solutions. Chem Eng J. 2021;409:128158.

16. Chu X, Sathish CI, Li M, et al. Anti-Stoke effect induced enhanced photocatalytic hydrogen production. Battery Energy. 2023;2:20220041.

17. Singh S, Modak A, Pant KK, Sinhamahapatra A, Biswas P. MoS2-nanosheets-based catalysts for photocatalytic CO2 reduction. ACS Appl Nano Mater. 2021;4:8644-8667.

18. Li M, Selvarajan P, Wang S, et al. Thermostable 1T-MoS2 nanosheets achieved by spontaneous intercalation of Cu single atoms at room temperature and their enhanced HER performance. Small Struct. 2023;4:2300010.

19. Ma Z, Yuan X, Zhang Z, et al. Novel flower-like nickel sulfide as an efficient electrocatalyst for non-aqueous lithium-air batteries. Sci Rep. 2015;5:18199.

20. Attanayake NH, Thenuwara AC, Patra A, et al. Effect of intercalated metals on the electrocatalytic activity of 1T-MoS2 for the hydrogen evolution reaction. ACS Energy Lett. 2017;3:7-13.

21. Liu Z, Yu X, Li J, et al. Electrocatalytic hydrogenation of indigo by NiMoS: energy saving and conversion improving. Dalton T. 2023;52:17438-17448.

22. Panchu SJ, Raju K, Singh P, Johnson DD, Swart HC. High mass loading of flowerlike Ni-MoS2 microspheres toward efficient intercalation pseudocapacitive electrodes. ACS Appl Energy Mater. 2023;6:2187-2198.

23. Liao W, Pang S, Wang S, Su H, Zhang Y. vs-NiS2/NiS Heterostructures achieving ultralow overpotential in alkaline hydrogen evolution. Langmuir. 2022;38:13916-13922.

24. Li M, Zhou Z, Hu L, et al. Hydrazine hydrate intercalated 1T-dominant MoS2 with superior ambient stability for highly efficient electrocatalytic applications. ACS Appl Mater Inter. 2022;14:16338-16347.

25. Jiang J, Sun F, Zhou S, et al. Atomic-level insight into super-efficient electrocatalytic oxygen evolution on iron and vanadium Co-doped nickel (oxy)hydroxide. Nat Commun. 2018;9:2885.

26. Baker ML, Mara MW, Yan JJ, Hodgson KO, Hedman B, Solomon EI. K- and L-edge X-ray absorption spectroscopy (XAS) and resonant inelastic X-ray scattering (RIXS) determination of differential orbital covalency (DOC) of transition metal sites. Coordin Chem Rev. 2017;345:182-208.

27. Guda AA, Guda SA, Martini A, et al. Understanding X-ray absorption spectra by means of descriptors and machine learning algorithms. NPJ Comput Mater. 2021;7:203.

28. Kerr BV, King HJ, Garibello CF, et al. Characterization of energy materials with X-ray absorption spectroscopy-advantages. Energ Fuel. 2022;36:2369-2389.

29. Newville M. Fundamentals of XAFS. Rev Mineral Geochem. 2014;78:33-74.

30. Ahmed S, Ding X, Bao N, et al. Inducing high coercivity in MoS2 nanosheets by transition element doping. Chem Mater. 2017;29:9066-9074.

31. Ma YW, Yi JB, Ding J, Van LH, Zhang HT, Ng CM. Inducing ferromagnetism in ZnO through doping of nonmagnetic elements. Appl Phys Lett. 2008;93:042514.

32. Ahmed S, Ding X, Murmu PP, et al. High coercivity and magnetization in WSe2 by codoping Co and Nb. Small. 2020;16:e1903173.

33. Ding X, Cui X, Tseng LT, et al. Realization of high magnetization in artificially designed Ni/NiO layers through exchange coupling. Small. 2023:e2304369.

34. Saadaoui H, Luo X, Salman Z, et al. Intrinsic ferromagnetism in the diluted magnetic semiconductor Co-TiO2. Phys Rev Lett. 2016;117:227202.

35. Ren H, Xiang G. Strain-modulated magnetism in MoS2. Nanomaterials. 2022;4:1929.

36. Panda SK, Dasgupta I, Şaşıoğlu E, Blügel S, Sarma DD. NiS - an unusual self-doped, nearly compensated antiferromagnetic metal. Sci Rep. 2013;3:2995.

37. Barthelemy E, Chavant C, Collin G, Gorochov O. Metal-non metal transition of Ni1-s and NiS substrituted by Se, As and Fe: transport properties and structural aspect. Journal De Physique. 1976;10:C4-17.

38. Kikuchi K, Miyadai T, Ito Y. Weak ferro- and antiferromagnetism of NiS2. J Magn Magn Mater. 1980;15:485-6.

Chemical Synthesis
ISSN 2769-5247 (Online)

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/