REFERENCES

1. Achakulwisut, P.; Erickson, P.; Guivarch, C.; Schaeffer, R.; Brutschin, E.; Pye, S. Global fossil fuel reduction pathways under different climate mitigation strategies and ambitions. Nat. Commun. 2023, 14, 5425.

2. air for a sustainable world. Nat. Commun. 2021, 12, 5824.

3. Fang, S.; Rahaman, M.; Bharti, J.; et al. Photocatalytic CO2 reduction. Nat. Rev. Methods. Primers. 2023, 3, 243.

4. Albero, J.; Peng, Y.; García, H. Photocatalytic CO2 reduction to C2+ products. ACS. Catal. 2020, 10, 5734-49.

5. Bhanderi, D.; Lakhani, P.; Modi, C. K. Graphitic carbon nitride (g-C3N4) as an emerging photocatalyst for sustainable environmental applications: a comprehensive review. RSC. Sustain. 2024, 2, 265-87.

6. Yang, R.; Mei, L.; Fan, Y.; et al. ZnIn2S4-based photocatalysts for energy and environmental applications. Small. Methods. 2021, 5, e2100887.

7. Li, Z.; Li, Z.; Zuo, C.; Fang, X. Application of nanostructured TiO2 in UV photodetectors: a review. Adv. Mater. 2022, 34, e2109083.

8. Yang, M. Q.; Gao, M.; Hong, M.; Ho, G. W. Visible-to-NIR photon harvesting: progressive engineering of catalysts for solar-powered environmental purification and fuel production. Adv. Mater. 2018, 30, e1802894.

9. Han, C.; Kundu, B. K.; Liang, Y.; Sun, Y. Near-infrared light-driven photocatalysis with an emphasis on two-photon excitation: concepts, materials, and applications. Adv. Mater. 2024, 36, e2307759.

10. Xu, M.; Ruan, X.; Meng, D.; et al. Modulation of sulfur vacancies in ZnIn2S4/MXene Schottky heterojunction photocatalyst promotes hydrogen evolution. Adv. Funct. Mater. 2024, 34, 2402330.

11. Peng, H.; Yang, H.; Han, J.; et al. Defective ZnIn2S4 nanosheets for visible-light and sacrificial-agent-free H2O2 photosynthesis via O2/H2O redox. J. Am. Chem. Soc. 2023, 145, 27757-66.

12. Sun, L.; Wang, W.; Kong, T.; Jiang, H.; Tang, H.; Liu, Q. Fast charge transfer kinetics in an inorganic–organic S-scheme heterojunction photocatalyst for cooperative hydrogen evolution and furfuryl alcohol upgrading. J. Mater. Chem. A. 2022, 10, 22531-9.

13. Qiu, B.; Huang, P.; Lian, C.; et al. Realization of all-in-one hydrogen-evolving photocatalysts via selective atomic substitution. Appl. Catal. B. Environ. 2021, 298, 120518.

14. Tian, Q.; Yao, W.; Wu, W.; et al. Efficient UV–Vis-NIR responsive upconversion and plasmonic-enhanced photocatalyst based on lanthanide-doped NaYF4/SnO2/Ag. ACS. Sustainable. Chem. Eng. 2017, 5, 10889-99.

15. Huang, H.; Liang, X.; Wang, Z.; et al. Bi20TiO32 nanoparticles doped with Yb3+ and Er3+ as UV, visible, and near-infrared responsive photocatalysts. ACS. Appl. Nano. Mater. 2019, 2, 5381-8.

16. Xie, J.; Zhang, X.; Lu, Z.; et al. Up-conversion effect boosted the photocatalytic CO2 reduction activity of Z-scheme CPDs/BiOBr heterojunction. Inorg. Chem. Front. 2023, 10, 5127-35.

17. Wen, S.; Zhou, J.; Zheng, K.; Bednarkiewicz, A.; Liu, X.; Jin, D. Advances in highly doped upconversion nanoparticles. Nat. Commun. 2018, 9, 2415.

18. Yu, M.; Lv, X.; Mahmoud, I. A.; et al. Upconversion nanoparticles coupled with hierarchical ZnIn2S4 nanorods as a near-infrared responsive photocatalyst for photocatalytic CO2 reduction. J. Colloid. Interface. Sci. 2022, 612, 782-91.

19. Hou, Z.; Zhang, Y.; Deng, K.; et al. UV-emitting upconversion-based TiO2 photosensitizing nanoplatform: near-infrared light mediated in vivo photodynamic therapy via mitochondria-involved apoptosis pathway. ACS. Nano. 2015, 9, 2584-99.

20. Nie, Z.; Ke, X.; Li, D.; et al. NaYF4:Yb,Er,Nd@NaYF4:Nd upconversion nanocrystals capped with Mn:TiO2 for 808 nm NIR-triggered photocatalytic applications. J. Phys. Chem. C. 2019, 123, 22959-70.

21. Karami, A.; Farivar, F.; de, P. T. J.; et al. Facile multistep synthesis of ZnO-coated β-NaYF4:Yb/Tm upconversion nanoparticles as an antimicrobial photodynamic therapy for persistent Staphylococcus aureus small colony variants. ACS. Appl. Bio. Mater. 2021, 4, 6125-36.

22. Liu, Q.; Wu, B.; Li, M.; Huang, Y.; Li, L. Heterostructures made of upconversion nanoparticles and metal-organic frameworks for biomedical applications. Adv. Sci. 2022, 9, e2103911.

23. Cheng, Q.; Huang, M.; Xiao, L.; et al. Unraveling the influence of oxygen vacancy concentration on electrocatalytic CO2 reduction to formate over indium oxide catalysts. ACS. Catal. 2023, 13, 4021-9.

24. Peng, C.; Luo, G.; Zhang, J.; et al. Double sulfur vacancies by lithium tuning enhance CO2 electroreduction to n-propanol. Nat. Commun. 2021, 12, 1580.

25. Zhang, K.; Dan, M.; Yang, J.; et al. Surface energy mediated sulfur vacancy of ZnIn2S4 atomic layers for photocatalytic H2O2 production. Adv. Funct. Mater. 2023, 33, 2302964.

26. He, Y.; Rao, H.; Song, K.; et al. 3D hierarchical ZnIn2S4 nanosheets with rich Zn vacancies boosting photocatalytic CO2 reduction. Adv. Funct. Mater. 2019, 29, 1905153.

27. Nie, Y.; Bo, T.; Zhou, W.; et al. Understanding the role of Zn vacancy induced by sulfhydryl coordination for photocatalytic CO2 reduction on ZnIn2S4. J. Mater. Chem. A. 2023, 11, 1793-800.

28. Zhang, G.; Wu, H.; Chen, D.; et al. A mini-review on ZnIn2S4-based photocatalysts for energy and environmental application. Green. Energy. Environ. 2022, 7, 176-204.

29. Ouyang, C.; Quan, X.; Chen, Z. A.; et al. Intercalation- and vacancy-enhanced internal electric fields in ZnIn2S4 for highly efficient photocatalytic H2O2 production. J. Phys. Chem. C. 2023, 127, 20683-99.

30. Zhang, Z.; Liu, K.; Feng, Z.; Bao, Y.; Dong, B. Hierarchical sheet-on-sheet ZnIn2S4/g-C3N4 heterostructure with highly efficient photocatalytic H2 production based on photoinduced interfacial charge transfer. Sci. Rep. 2016, 6, 19221.

31. Xin, Z.; Zheng, H.; Hu, J. Construction of hollow Co3O4@ZnIn2S4 p-n heterojunctions for highly efficient photocatalytic hydrogen production. Nanomaterials 2023, 13, 758.

32. Qiu, H.; Tan, M.; Ohulchanskyy, T. Y.; Lovell, J. F.; Chen, G. Recent progress in upconversion photodynamic therapy. Nanomaterials 2018, 8, 344.

33. Si, S.; Shou, H.; Mao, Y.; et al. Low-coordination single Au atoms on ultrathin ZnIn2S4 nanosheets for selective photocatalytic CO2 reduction towards CH4. Angew. Chem. Int. Ed. Engl. 2022, 61, e202209446.

34. Chong, W. K.; Ng, B. J.; Lee, Y. J.; et al. Self-activated superhydrophilic green ZnIn2S4 realizing solar-driven overall water splitting: close-to-unity stability for a full daytime. Nat. Commun. 2023, 14, 7676.

35. Xu, B.; Li, H.; Chong, B.; Lin, B.; Yan, X.; Yang, G. Zn vacancy-tailoring mediated ZnIn2S4 nanosheets with accelerated orderly charge flow for boosting photocatalytic hydrogen evolution. Chem. Eng. Sci. 2023, 270, 118533.

36. Liang, L.; Li, X.; Zhang, J.; et al. Efficient infrared light induced CO2 reduction with nearly 100% CO selectivity enabled by metallic CoN porous atomic layers. Nano. Energy. 2020, 69, 104421.

37. Ye, L.; Wang, H.; Jin, X.; et al. Synthesis of olive-green few-layered BiOI for efficient photoreduction of CO2 into solar fuels under visible/near-infrared light. Sol. Energ. Mat. Sol. C. 2016, 144, 732-9.

38. Kong, X. Y.; Tan, W. L.; Ng, B.; Chai, S.; Mohamed, A. R. Harnessing Vis–NIR broad spectrum for photocatalytic CO2 reduction over carbon quantum dots-decorated ultrathin Bi2WO6 nanosheets. Nano. Res. 2017, 10, 1720-31.

39. Liang, L.; Li, X.; Sun, Y.; et al. Infrared light-driven CO2 overall splitting at room temperature. Joule 2018, 2, 1004-16.

40. Ji, X.; Guo, R.; Tang, J.; et al. Construction of full solar-spectrum-driven Cu2-xS/Ni-Al-LDH heterostructures for efficient photocatalytic CO2 reduction. ACS. Appl. Energy. Mater. 2022, 5, 2862-72.

41. Wang, F.; Chen, S.; Wu, J.; Xiang, W.; Duan, L. Construction of 2D/3D g-C3N4/ZnIn2S4 heterojunction for efficient photocatalytic reduction of CO2 under visible light. Ind. Eng. Chem. Res. 2023, 62, 15907-18.

42. Ji, J.; Li, R.; Zhang, H.; et al. Highly selective photocatalytic reduction of CO2 to ethane over Au-O-Ce sites at micro-interface. Appl. Catal. B. Environ. 2023, 321, 122020.

43. Hu, T.; Feng, P.; Guo, L.; Chu, H.; Liu, F. Construction of built-in electric field in TiO2@Ti2O3 core-shell heterojunctions toward optimized photocatalytic performance. Nanomaterials 2023, 13, 2125.

44. Ouyang, C.; Quan, X.; Zhang, C.; et al. Direct Z-scheme ZnIn2S4@MoO3 heterojunction for efficient photodegradation of tetracycline hydrochloride under visible light irradiation. Chem. Eng. J. 2021, 424, 130510.

45. Böke, J. S.; Popp, J.; Krafft, C. Optical photothermal infrared spectroscopy with simultaneously acquired Raman spectroscopy for two-dimensional microplastic identification. Sci. Rep. 2022, 12, 18785.

46. Wang, L.; Cheng, B.; Zhang, L.; Yu, J. In situ irradiated XPS investigation on S-scheme TiO2@ZnIn2S4 photocatalyst for efficient photocatalytic CO2 reduction. Small 2021, 17, e2103447.

47. Shangguan, W.; Liu, Q.; Wang, Y.; et al. Molecular-level insight into photocatalytic CO2 reduction with H2O over Au nanoparticles by interband transitions. Nat. Commun. 2022, 13, 3894.

48. Wang, B.; Zhang, W.; Liu, G.; et al. Excited electron-rich Bi(3-x)+ sites: a quantum well-like structure for highly promoted selective photocatalytic CO2 reduction performance. Adv. Funct. Mater. 2022, 32, 2202885.

49. Pogorelov, V.; Doroshenko, I.; Pitsevich, G.; et al. From clusters to condensed phase - FT IR studies of water. J. Mol. Liq. 2017, 235, 7-10.

50. Ran, L.; Li, Z.; Ran, B.; et al. Engineering single-atom active sites on covalent organic frameworks for boosting CO2 photoreduction. J. Am. Chem. Soc. 2022, 144, 17097-109.

51. Ma, Y.; Zhang, Y.; Xie, G.; et al. Isolated Cu sites in CdS hollow nanocubes with doping-location-dependent performance for photocatalytic CO2 reduction. ACS. Catal. 2024, 14, 1468-79.

52. Zhang, J.; Cao, C.; Wang, J.; Li, S.; Xie, Y. NaYF4:Yb,Er@NaYF4:Yb,Tm and NaYF4:Yb,Tm@NaYF4:Yb,Er core@shell upconversion nanoparticles embedded in acrylamide hydrogels for anti-counterfeiting and information encryption. ACS. Appl. Nano. Mater. 2022, 5, 16642-54.

53. Chen, G.; Qiu, H.; Prasad, P. N.; Chen, X. Upconversion nanoparticles: design, nanochemistry, and applications in theranostics. Chem. Rev. 2014, 114, 5161-214.

54. Ansari, A. A.; Labis, J. P.; Khan, A. Biocompatible NaYF4:Yb,Er upconversion nanoparticles: colloidal stability and optical properties. J. Saudi. Chem. Soc. 2021, 25, 101390.

55. Giang, L. T. K.; Trejgis, K.; Marciniak, L.; Vu, N.; Minh, L. Q. Fabrication and characterization of up-converting β-NaYF4:Er3+,Yb3+@NaYF4 core-shell nanoparticles for temperature sensing applications. Sci. Rep. 2020, 10, 14672.

Chemical Synthesis
ISSN 2769-5247 (Online)

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/