REFERENCES

1. Meng, X.; Cui, X.; Rajan, N. P.; Yu, L.; Deng, D.; Bao, X. Direct methane conversion under mild condition by thermo-, electro-, or photocatalysis. Chem 2019, 5, 2296-325.

2. Schwach, P.; Pan, X.; Bao, X. Direct conversion of methane to value-added chemicals over heterogeneous catalysts: challenges and prospects. Chem. Rev. 2017, 117, 8497-520.

3. Bauer, N.; Hilaire, J.; Brecha, R. J.; et al. Assessing global fossil fuel availability in a scenario framework. Energy 2016, 111, 580-92.

4. Li, X.; Wang, C.; Tang, J. Methane transformation by photocatalysis. Nat. Rev. Mater. 2022, 7, 617-32.

5. Van Gerven, T.; Mul, G.; Moulijn, J.; Stankiewicz, A. A review of intensification of photocatalytic processes. Chem. Eng. Process. 2007, 46, 781-9.

6. Pan, X.; Chen, X.; Yi, Z. Photocatalytic oxidation of methane over SrCO3 decorated SrTiO3 nanocatalysts via a synergistic effect. Phys. Chem. Chem. Phys. 2016, 18, 31400-9.

7. Shimura, K.; Kawai, H.; Yoshida, T.; Yoshida, H. Bifunctional rhodium cocatalysts for photocatalytic steam reforming of methane over alkaline titanate. ACS. Catal. 2012, 2, 2126-34.

8. Li, Z.; Boda, M. A.; Pan, X.; Yi, Z. Photocatalytic oxidation of small molecular hydrocarbons over ZnO nanostructures: the difference between methane and ethylene and the impact of polar and nonpolar facets. ACS. Sustain. Chem. Eng. 2019, 7, 19042-9.

9. Li, Q.; Ouyang, Y.; Li, H.; Wang, L.; Zeng, J. Photocatalytic conversion of methane: recent advancements and prospects. Angew. Chem. Int. Ed. Engl. 2022, 61, e202108069.

10. Murcia-López, S.; Villa, K.; Andreu, T.; Morante, J. R. Partial oxidation of methane to methanol using bismuth-based photocatalysts. ACS. Catal. 2014, 4, 3013-9.

11. Zhou, Y.; Zhang, L.; Wang, W. Direct functionalization of methane into ethanol over copper modified polymeric carbon nitride via photocatalysis. Nat. Commun. 2019, 10, 506.

12. Xie, J.; Jin, R.; Li, A.; et al. Highly selective oxidation of methane to methanol at ambient conditions by titanium dioxide-supported iron species. Nat. Catal. 2018, 1, 889-96.

13. Song, H.; Meng, X.; Wang, Z.; Liu, H.; Ye, J. Solar-energy-mediated methane conversion. Joule 2019, 3, 1606-36.

14. Li, Z.; Pan, X.; Yi, Z. Photocatalytic oxidation of methane over CuO-decorated ZnO nanocatalysts. J. Mater. Chem. A. 2019, 7, 469-75.

15. Chen, X.; Li, Y.; Pan, X.; Cortie, D.; Huang, X.; Yi, Z. Photocatalytic oxidation of methane over silver decorated zinc oxide nanocatalysts. Nat. Commun. 2016, 7, 12273.

16. Liu, H.; Dao, T. D.; Liu, L.; Meng, X.; Nagao, T.; Ye, J. Light assisted CO2 reduction with methane over group VIII metals: universality of metal localized surface plasmon resonance in reactant activation. Appl. Cataly. B. Environ. 2017, 209, 183-9.

17. Yu, X.; Zholobenko, V. L.; Moldovan, S.; et al. Stoichiometric methane conversion to ethane using photochemical looping at ambient temperature. Nat. Energy. 2020, 5, 511-9.

18. Liu, Z.; Xu, B.; Jiang, Y. J.; et al. Photocatalytic conversion of methane: current state of the art, challenges, and future perspectives. ACS. Environ. Au. 2023, 3, 252-76.

19. Zondag, S. D. A.; Mazzarella, D.; Noël, T. Scale-up of photochemical reactions: transitioning from lab scale to industrial production. Annu. Rev. Chem. Biomol. Eng. 2023, 14, 283-300.

20. Lin, X.; Li, J.; Qi, M.; Tang, Z.; Xu, Y. Methane conversion over artificial photocatalysts. Catal. Commun. 2021, 159, 106346.

21. Wang, Y.; Zhang, H.; Zhang, J.; et al. Low-concentration methane removal: what can we learn from high-concentration methane conversion? Catal. Sci. Technol. 2023, 13, 6392-408.

22. Wei, J.; Yang, J.; Wen, Z.; Dai, J.; Li, Y.; Yao, B. Efficient photocatalytic oxidation of methane over β-Ga2O3/activated carbon composites. RSC. Adv. 2017, 7, 37508-21.

23. Fan, Y.; Zhou, W.; Qiu, X.; et al. Selective photocatalytic oxidation of methane by quantum-sized bismuth vanadate. Nat. Sustain. 2021, 4, 509-15.

24. Yu, D.; Jia, Y.; Yang, Z.; et al. Solar photocatalytic oxidation of methane to methanol with water over RuOx/ZnO/CeO2 nanorods. ACS. Sustain. Chem. Eng. 2022, 10, 16-22.

25. Ding, J.; Teng, Z.; Su, X.; et al. Asymmetrically coordinated cobalt single atom on carbon nitride for highly selective photocatalytic oxidation of CH4 to CH3OH. Chem 2023, 9, 1017-35.

26. Zhu, W.; Shen, M.; Fan, G.; et al. Facet-dependent enhancement in the activity of bismuth vanadate microcrystals for the photocatalytic conversion of methane to methanol. ACS. Appl. Nano. Mater. 2018, 1, 6683-91.

27. Zeng, Y.; Luo, X.; Li, F.; et al. Noble metal-free FeOOH/Li0.1WO3 core-shell nanorods for selective oxidation of methane to methanol with visible-NIR light. Environ. Sci. Technol. 2021, 55, 7711-20.

28. Wang, Y.; Zhang, J.; Shi, W. X.; et al. W single-atom catalyst for CH4 photooxidation in water vapor. Adv. Mater. 2022, 34, 2204448.

29. Zhang, Z.; Zhang, J.; Zhu, Y.; et al. Photo-splitting of water toward hydrogen production and active oxygen species for methane activation to methanol on Co-SrTiO. Chem. Catal. 2022, 2, 1440-9.

30. Gan, Y.; Huang, M.; Yu, F.; et al. Highly selective photocatalytic methane oxidation to methanol using CO2 as a soft oxidant. ACS. Sustain. Chem. Eng. 2023, 11, 5537-46.

31. Song, H.; Meng, X.; Wang, S.; et al. Selective photo-oxidation of methane to methanol with oxygen over dual-cocatalyst-modified titanium dioxide. ACS. Catal. 2020, 10, 14318-26.

32. Luo, P. P.; Zhou, X. K.; Li, Y.; Lu, T. B. Simultaneously accelerating carrier transfer and enhancing O2/CH4 activation via tailoring the oxygen-vacancy-rich surface layer for cocatalyst-free selective photocatalytic CH4 conversion. ACS. Appl. Mater. Interfaces. 2022, 14, 21069-78.

33. Luo, L.; Gong, Z.; Xu, Y.; et al. Binary Au-Cu reaction sites decorated ZnO for selective methane oxidation to C1 oxygenates with nearly 100% selectivity at room temperature. J. Am. Chem. Soc. 2022, 144, 740-50.

34. Luo, L.; Fu, L.; Liu, H.; et al. Synergy of Pd atoms and oxygen vacancies on In2O3 for methane conversion under visible light. Nat. Commun. 2022, 13, 2930.

35. Jiang, Y.; Li, S.; Wang, S.; et al. Enabling specific photocatalytic methane oxidation by controlling free radical type. J. Am. Chem. Soc. 2023, 145, 2698-707.

36. Luo, L.; Han, X.; Wang, K.; et al. Nearly 100% selective and visible-light-driven methane conversion to formaldehyde via. single-atom Cu and Wδ+. Nat. Commun. 2023, 14, 2690.

37. Wu, X.; Zhang, Q.; Li, W.; Qiao, B.; Ma, D.; Wang, S. L. Atomic-scale Pd on 2D titania sheets for selective oxidation of methane to methanol. ACS. Catal. 2021, 11, 14038-46.

38. Zhu, S.; Li, X.; Pan, Z.; et al. Efficient photooxidation of methane to liquid oxygenates over ZnO nanosheets at atmospheric pressure and near room temperature. Nano. Lett. 2021, 21, 4122-8.

39. Xie, P.; Ding, J.; Yao, Z.; et al. Oxo dicopper anchored on carbon nitride for selective oxidation of methane. Nat. Commun. 2022, 13, 1375.

40. Sun, X.; Chen, X.; Fu, C.; et al. Molecular oxygen enhances H2O2 utilization for the photocatalytic conversion of methane to liquid-phase oxygenates. Nat. Commun. 2022, 13, 6677.

41. Fang, G.; Wei, F.; Lin, J.; et al. Retrofitting Zr-Oxo nodes of UiO-66 by Ru single atoms to boost methane hydroxylation with nearly total selectivity. J. Am. Chem. Soc. 2023, 145, 13169-80.

42. Cai, X.; Fang, S.; Hu, Y. H. Unprecedentedly high efficiency for photocatalytic conversion of methane to methanol over Au–Pd/TiO2 - what is the role of each component in the system? J. Mater. Chem. A. 2021, 9, 10796-802.

43. Doan, H. A.; Wang, X.; Snurr, R. Q. Computational screening of supported metal oxide nanoclusters for methane activation: insights into homolytic versus heterolytic C-H bond dissociation. J. Phys. Chem. Lett. 2023, 14, 5018-24.

44. Chen, Y.; Wang, F.; Huang, Z.; et al. Dual-function reaction center for simultaneous activation of CH4 and O2 via oxygen vacancies during direct selective oxidation of CH4 into CH3OH. ACS. Appl. Mater. Interfaces. 2021, 13, 46694-702.

45. Feng, N.; Lin, H.; Song, H.; et al. Efficient and selective photocatalytic CH4 conversion to CH3OH with O2 by controlling overoxidation on TiO2. Nat. Commun. 2021, 12, 4652.

46. Sun, Z.; Wang, C.; Hu, Y. H. Highly selective photocatalytic conversion of methane to liquid oxygenates over silicomolybdic-acid/TiO2 under mild conditions. J. Mater. Chem. A. 2021, 9, 1713-9.

47. Zhu, Y.; Chen, S.; Fang, S.; Li, Z.; Wang, C.; Hu, Y. H. Distinct pathways in visible-light driven thermo-photo catalytic methane conversion. J. Phys. Chem. Lett. 2021, 12, 7459-65.

48. Zhang, W.; Fu, C.; Low, J.; et al. High-performance photocatalytic nonoxidative conversion of methane to ethane and hydrogen by heteroatoms-engineered TiO2. Nat. Commun. 2022, 13, 2806.

49. Wang, X.; Luo, N.; Wang, F. Advances and challenges of photocatalytic methane C-C coupling. Chin. J. Chem. 2022, 40, 1492-505.

50. Zhang, H.; Sun, P.; Fei, X.; et al. Unusual facet and co-catalyst effects in TiO2-based photocatalytic coupling of methane. Nat. Commun. 2024, 15, 4453.

51. Ma, J.; Mao, K.; Low, J.; et al. Efficient photoelectrochemical conversion of methane into ethylene glycol by WO3 nanobar arrays. Angew. Chem. Int. Ed. Engl. 2021, 60, 9357-61.

52. Nie, S.; Wu, L.; Wang, X. Electron-delocalization-stabilized photoelectrocatalytic coupling of methane by NiO-polyoxometalate sub-1 nm heterostructures. J. Am. Chem. Soc. 2023, 145, 23681-90.

53. Dong, C.; Marinova, M.; Tayeb, K. B.; et al. Direct photocatalytic synthesis of acetic acid from methane and CO at ambient temperature using water as oxidant. J. Am. Chem. Soc. 2023, 145, 1185-93.

54. Fang, F.; Sun, X.; Liu, Y.; Huang, W. Water radiocatalysis for selective aqueous-phase methane carboxylation with carbon dioxide into acetic acid at room temperature. J. Am. Chem. Soc. 2024, 146, 8492-9.

55. Li, X.; Li, C.; Xu, Y.; et al. Efficient hole abstraction for highly selective oxidative coupling of methane by Au-sputtered TiO2 photocatalysts. Nat. Energy. 2023, 8, 1013-22.

56. Wang, C.; Li, X.; Ren, Y.; Jiao, H.; Wang, F. R.; Tang, J. Synergy of Ag and AgBr in a pressurized flow reactor for selective photocatalytic oxidative coupling of methane. ACS. Catal. 2023, 13, 3768-74.

57. Wang, P.; Shi, R.; Zhao, Y.; et al. Selective photocatalytic oxidative coupling of methane via regulating methyl intermediates over metal/ZnO nanoparticles. Angew. Chem. Int. Ed. Engl. 2023, 62, e202304301.

58. Wang, Y.; Zhang, Y.; Liu, Y.; Wu, Z. Photocatalytic oxidative coupling of methane to ethane using water and oxygen on Ag3PO4-ZnO. Environ. Sci. Technol. 2023, 57, 11531-40.

59. Wu, S.; Tan, X.; Lei, J.; Chen, H.; Wang, L.; Zhang, J. Ga-doped and Pt-loaded porous TiO2-SiO2 for photocatalytic nonoxidative coupling of methane. J. Am. Chem. Soc. 2019, 141, 6592-600.

60. Chen, Z.; Wu, S.; Ma, J.; et al. Non-oxidative coupling of methane: N-type doping of niobium single atoms in TiO2-SiO2 induces electron localization. Angew. Chem. Int. Ed. Engl. 2021, 60, 11901-9.

61. Singh, S. P.; Yamamoto, A.; Fudo, E.; Tanaka, A.; Kominami, H.; Yoshida, H. A Pd-Bi dual-cocatalyst-loaded gallium oxide photocatalyst for selective and stable nonoxidative coupling of methane. ACS. Catal. 2021, 11, 13768-81.

62. Zhang, J.; Shen, J.; Li, D.; et al. Efficiently light-driven nonoxidative coupling of methane on Ag/NaTaO3: a case for molecular-level understanding of the coupling mechanism. ACS. Catal. 2023, 13, 2094-105.

63. Wang, G.; Mu, X.; Li, J.; et al. Light-induced nonoxidative coupling of methane using stable solid solutions. Angew. Chem. Int. Ed. Engl. 2021, 60, 20760-4.

64. Chen, Z.; Ye, Y.; Feng, X.; et al. High-density frustrated Lewis pairs based on Lamellar Nb2O5 for photocatalytic non-oxidative methane coupling. Nat. Commun. 2023, 14, 2000.

65. Tang, H.; Chen, Z. A.; Ouyang, C.; et al. Coupling the surface plasmon resonance of WO3-x and Au for enhancing the photocatalytic activity of the nonoxidative methane coupling reaction. J. Phys. Chem. C. 2022, 126, 20036-48.

66. Zhu, P.; Bian, W.; Liu, B.; et al. Direct conversion of methane to aromatics and hydrogen via a heterogeneous trimetallic synergistic catalyst. Nat. Commun. 2024, 15, 3280.

67. Li, D.; Shen, J.; Zhang, J.; et al. Photocatalytic chlorination of methane using alkali chloride solution. ACS. Catal. 2022, 12, 7004-13.

68. Ma, J.; Zhu, C.; Mao, K.; et al. Sustainable methane utilization technology via photocatalytic halogenation with alkali halides. Nat. Commun. 2023, 14, 1410.

69. He, X.; Zhang, L.; Chen, J.; et al. Photo-driven aerobic methane nitration. Inorg. Chem. 2023, 62, 10343-50.

70. Smith, K. T.; Berritt, S.; González-Moreiras, M.; et al. Catalytic borylation of methane. Science 2016, 351, 1424-7.

71. Hartwig, J. F. Regioselectivity of the borylation of alkanes and arenes. Chem. Soc. Rev. 2011, 40, 1992-2002.

72. Cook, A. K.; Schimler, S. D.; Matzger, A. J.; Sanford, M. S. Catalyst-controlled selectivity in the C-H borylation of methane and ethane. Science 2016, 351, 1421-4.

73. Shu, C.; Noble, A.; Aggarwal, V. K. Metal-free photoinduced C(sp3)-H borylation of alkanes. Nature 2020, 586, 714-9.

74. Zhou, L.; Martirez, J. M. P.; Finzel, J.; et al. Light-driven methane dry reforming with single atomic site antenna-reactor plasmonic photocatalysts. Nat. Energy. 2020, 5, 61-70.

75. Shoji, S.; Peng, X.; Yamaguchi, A.; et al. Photocatalytic uphill conversion of natural gas beyond the limitation of thermal reaction systems. Nat. Catal. 2020, 3, 148-53.

76. Khan, A. A.; Tahir, M.; Bafaqeer, A. Constructing a stable 2D Layered Ti3C2 MXene cocatalyst-assisted TiO2/g-C3N4/Ti3C2 heterojunction for tailoring photocatalytic bireforming of methane under visible light. Energy. Fuels. 2020, 34, 9810-28.

77. Du, Z.; Pan, F.; Sarnello, E.; et al. Probing the origin of photocatalytic effects in photothermochemical dry reforming of methane on a Pt/CeO2 catalyst. J. Phys. Chem. C. 2021, 125, 18684-92.

78. Rao, Z.; Cao, Y.; Huang, Z.; et al. Insights into the nonthermal effects of light in dry reforming of methane to enhance the H2/CO ratio near unity over Ni/Ga2O3. ACS. Catal. 2021, 11, 4730-8.

79. Li, Q.; Gao, Y.; Chen, J.; Jia, H. An in situ defect engineering approach for light-driven methane dry reforming over atomically distributed nickel. Cell. Rep. Phys. Sci. 2022, 3, 101127.

80. Shoji, S.; Bin, M. N. A. S.; Yu, M.; et al. Charge partitioning by intertwined metal-oxide nano-architectural networks for the photocatalytic dry reforming of methane. Chem. Catal. 2022, 2, 321-9.

81. Low, J.; Long, R.; Xiong, Y. Solar-driven conversion of greenhouse gases toward closing the artificial carbon-cycle loop. Chem. Catal. 2022, 2, 226-8.

82. Niu, J.; Wang, Y.; Qi, Y.; et al. New mechanism insights into methane steam reforming on Pt/Ni from DFT and experimental kinetic study. Fuel 2020, 266, 117143.

83. Kaliaguine, S. L.; Shelimov, B. N.; Kazansky, V. B. Reactions of methane and ethane with hole centers O-. J. Catal. 1978, 55, 384-93.

84. Villa, K.; Murcia-lópez, S.; Andreu, T.; Morante, J. R. On the role of WO3 surface hydroxyl groups for the photocatalytic partial oxidation of methane to methanol. Catal. Commun. 2015, 58, 200-3.

85. Yang, J.; Hao, J.; Wei, J.; Dai, J.; Li, Y. Visible-light-driven selective oxidation of methane to methanol on amorphous FeOOH coupled m-WO3. Fuel 2020, 266, 117104.

86. Li, N.; Li, Y.; Jiang, R.; Zhou, J.; Liu, M. Photocatalytic coupling of methane and CO2 into C2-hydrocarbons over Zn doped g-C3N4 catalysts. Appl. Surf. Sci. 2019, 498, 143861.

87. Linic, S.; Christopher, P.; Ingram, D. B. Plasmonic-metal nanostructures for efficient conversion of solar to chemical energy. Nat. Mater. 2011, 10, 911-21.

88. García-diéguez, M.; Pieta, I.; Herrera, M.; Larrubia, M.; Alemany, L. Nanostructured Pt- and Ni-based catalysts for CO2-reforming of methane. J. Catal. 2010, 270, 136-45.

89. Christopher, P.; Xin, H.; Linic, S. Visible-light-enhanced catalytic oxidation reactions on plasmonic silver nanostructures. Nat. Chem. 2011, 3, 467-72.

90. Schuller, J. A.; Barnard, E. S.; Cai, W.; Jun, Y. C.; White, J. S.; Brongersma, M. L. Plasmonics for extreme light concentration and manipulation. Nat. Mater. 2010, 9, 193-204.

91. Darvas, F.; Hessel, V.; Dorman, G. Volume 1 Flow chemistry - Fundamentals. Berlin, Boston: De Gruyter, 2014.

Chemical Synthesis
ISSN 2769-5247 (Online)

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/