REFERENCES

1. Deng, W.; Wang, Y. Research perspectives for catalytic valorization of biomass. J. Energy. Chem. 2023, 78, 102-4.

2. Deng, W.; Feng, Y.; Fu, J.; et al. Catalytic conversion of lignocellulosic biomass into chemicals and fuels. Green. Energy. Environ. 2023, 8, 10-114.

3. Li, Y.; Zhang, D.; Qiao, W.; et al. Nanostructured heterogeneous photocatalyst materials for green synthesis of valuable chemicals. Chem. Synth. 2022, 2, 9.

4. Wen, H.; Zhang, W.; Fan, Z.; Chen, Z. Recent advances in furfural reduction via electro- and photocatalysis: from mechanism to catalyst design. ACS. Catal. 2023, 13, 15263-89.

5. Wu, X.; Li, J.; Xie, S.; et al. Selectivity control in photocatalytic valorization of biomass-derived platform compounds by surface engineering of titanium oxide. Chem 2020, 6, 3038-53.

6. Chen, S.; Wojcieszak, R.; Dumeignil, F.; Marceau, E.; Royer, S. How catalysts and experimental conditions determine the selective hydroconversion of furfural and 5-hydroxymethylfurfural. Chem. Rev. 2018, 118, 11023-117.

7. Zhang, W.; Qian, H.; Hou, Q.; Ju, M. The functional and synergetic optimization of the thermal-catalytic system for the selective oxidation of 5-hydroxymethylfurfural to 2,5-diformylfuran: a review. Green. Chem. 2023, 25, 893-914.

8. Zhang, Q.; Gu, B.; Fang, W. Sunlight-driven photocatalytic conversion of furfural and its derivatives. Green. Chem. 2024, 26, 6261-88.

9. Wu, X.; Luo, N.; Xie, S.; et al. Photocatalytic transformations of lignocellulosic biomass into chemicals. Chem. Soc. Rev. 2020, 49, 6198-223.

10. Zhang, Q.; Zhang, H.; Gu, B.; Tang, Q.; Cao, Q.; Fang, W. Sunlight-driven photocatalytic oxidation of 5-hydroxymethylfurfural over a cuprous oxide-anatase heterostructure in aqueous phase. Appl. Catal. B. 2023, 320, 122006.

11. Wang, Y.; Gao, T.; Lu, Y.; Wang, Y.; Cao, Q.; Fang, W. Efficient hydrogenation of furfural to furfuryl alcohol by magnetically recoverable RuCo bimetallic catalyst. Green. Energy. Environ. 2022, 7, 275-87.

12. Zhang, H.; Wang, Y.; Zhang, Q.; et al. Synergy in magnetic NixCo1Oy oxides enables base-free selective oxidation of 5-hydroxymethylfurfural on loaded Au nanoparticles. J. Energy. Chem. 2023, 78, 526-36.

13. Zhang, H.; Zhang, R.; Zhang, W.; et al. Base-free selective oxidation of 5-hydroxymethylfurfural over Pt nanoparticles on surface Nb-enriched Co-Nb oxide. Appl Catal B 2023;330:122670.

14. Zhang, H.; Gao, T.; Zhang, Q.; et al. Synergistic catalysis in loaded PtRu alloy nanoparticles to boost base-free aerobic oxidation of 5-hydroxymethylfurfural. Mater. Today. Catal. 2023, 3, 100013.

15. Fan, B.; Zhang, H.; Gu, B.; Qiu, F.; Cao, Q.; Fang, W. Constructing Pr-doped CoOOH catalytic sites for efficient electrooxidation of 5-hydroxymethylfurfural. J. Energy. Chem. 2025, 100, 234-44.

16. Lilga, M. A.; Hallen, R. T.; Gray, M. Production of oxidized derivatives of 5-hydroxymethylfurfural (HMF). Top. Catal. 2010, 53, 1264-9.

17. Deurzen MP, van Rantwijk F, Sheldon RA. Chloroperoxidase-catalyzed oxidation of 5-hydroxymethylfurfural. J. Carbohydr. Chem. 1997, 16, 299-309.

18. Xia, T.; Gong, W.; Chen, Y.; et al. Sunlight-driven highly selective catalytic oxidation of 5-hydroxymethylfurfural towards tunable products. Angew. Chem. Int. Ed. Engl. 2022, 61, e202204225.

19. Zhang, M.; Zhang, Y.; Ye, L.; et al. In situ fabrication Ti3C2Fx MXene/CdIn2S4 schottky junction for photocatalytic oxidation of HMF to DFF under visible light. Appl. Catal. B. 2023, 330, 122635.

20. Ismael, M.; Shang, Q.; Yue, J.; Wark, M. Photooxidation of biomass for sustainable chemicals and hydrogen production on graphitic carbon nitride-based materials: a comprehensive review. Mater. Today. Sustain. 2024, 27, 100827.

21. Akhundi, A.; García-lópez, E. I.; Marcì, G.; Habibi-yangjeh, A.; Palmisano, L. Comparison between preparative methodologies of nanostructured carbon nitride and their use as selective photocatalysts in water suspension. Res. Chem. Intermed. 2017, 43, 5153-68.

22. Wang, X.; Meng, S.; Zhang, S.; Zheng, X.; Chen, S. 2D/2D MXene/g-C3N4 for photocatalytic selective oxidation of 5-hydroxymethylfurfural into 2,5-formylfuran. Catal. Commun. 2020, 147, 106152.

23. Krivtsov, I.; García-lópez, E. I.; Marcì, G.; et al. Selective photocatalytic oxidation of 5-hydroxymethyl-2-furfural to 2,5-furandicarboxyaldehyde in aqueous suspension of g-C3N4. Appl. Catal. B. 2017, 204, 430-9.

24. Ilkaeva, M.; Krivtsov, I.; García, J. R.; et al. Selective photocatalytic oxidation of 5-hydroxymethyl-2-furfural in aqueous suspension of polymeric carbon nitride and its adduct with H2O2 in a solar pilot plant. Catal. Today. 2018, 315, 138-48.

25. Ilkaeva, M.; Krivtsov, I.; García-lópez, E.; et al. Selective photocatalytic oxidation of 5-hydroxymethylfurfural to 2,5-furandicarboxaldehyde by polymeric carbon nitride-hydrogen peroxide adduct. J. Catal. 2018, 359, 212-22.

26. Marcì, G.; García-lópez, E.; Pomilla, F.; et al. Photoelectrochemical and EPR features of polymeric C3N4 and O-modified C3N4 employed for selective photocatalytic oxidation of alcohols to aldehydes. Catal. Today. 2019, 328, 21-8.

27. Mao, Q.; Ma, J.; Chen, M.; Lin, S.; Razzaq, N.; Cui, J. Recent advances in heavily doped plasmonic copper chalcogenides: from synthesis to biological application. Chem. Synth. 2023, 3, 26.

28. Lee, S.; Lee, S. W.; Jeon, T.; Park, D. H.; Jung, S. C.; Jang, J. Efficient direct electron transfer via band alignment in hybrid metal-semiconductor nanostructures toward enhanced photocatalysts. Nano. Energy. 2019, 63, 103841.

29. Furube, A.; Du, L.; Hara, K.; Katoh, R.; Tachiya, M. Ultrafast plasmon-induced electron transfer from gold nanodots into TiO2 nanoparticles. J. Am. Chem. Soc. 2007, 129, 14852-3.

30. Fowler, R. H. The analysis of photoelectric sensitivity curves for clean metals at various temperatures. Phys. Rev. 1931, 38, 45-56.

31. Liu, Y.; Chen, Q.; Cullen, D. A.; Xie, Z.; Lian, T. Efficient hot electron transfer from small Au nanoparticles. Nano. Lett. 2020, 20, 4322-9.

32. Yang, Q.; Wang, T.; Han, F.; Zheng, Z.; Xing, B.; Li, B. Bimetal-modified g-C3N4 photocatalyst for promoting hydrogen production coupled with selective oxidation of biomass derivative. J. Alloys. Compd. 2022, 897, 163177.

33. Ghalta, R.; Srivastava, R. Photocatalytic selective conversion of furfural to γ-butyrolactone through tetrahydrofurfuryl alcohol intermediates over Pd NP decorated g-C3N4. Sustain. Energ. Fuels. 2023, 7, 1707-23.

34. Kresse, G.; Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comp. Mater. Sci. 1996, 6, 15-50.

35. Xiong, T.; Cen, W.; Zhang, Y.; Dong, F. Bridging the g-C3N4 interlayers for enhanced photocatalysis. ACS. Catal. 2016, 6, 2462-72.

36. Wang, X.; Maeda, K.; Thomas, A.; et al. A metal-free polymeric photocatalyst for hydrogen production from water under visible light. Nat. Mater. 2009, 8, 76-80.

37. Fang, W.; Fan, Z.; Shi, H.; et al. Aquivion®-carbon composites via hydrothermal carbonization: amphiphilic catalysts for solvent-free biphasic acetalization. J. Mater. Chem. A. 2016, 4, 4380-5.

38. Wu, S.; Shang, R.; Zhang, H.; et al. Steering the Au-FexCo1Oy interface for efficient imine synthesis at low temperature via oxidative coupling reaction. Mol. Catal. 2023, 547, 113292.

39. García-lópez, E. I.; Pomilla, F. R.; Bloise, E.; et al. C3N4 impregnated with porphyrins as heterogeneous photocatalysts for the selective oxidation of 5-hydroxymethyl-2-furfural under solar irradiation. Top. Catal. 2021, 64, 758-71.

40. Movahed, S. K.; Miraghaee, S.; Dabiri, M. AuPd alloy nanoparticles decorated graphitic carbon nitride as an excellent photocatalyst for the visible-light-enhanced Suzuki-miyaura cross-coupling reaction. J. Alloys. Compd. 2020, 819, 152994.

41. Lu, G.; Chu, F.; Huang, X.; Li, Y.; Liang, K.; Wang, G. Recent advances in metal-organic frameworks-based materials for photocatalytic selective oxidation. Coord. Chem. Rev. 2022, 450, 214240.

42. Xu, S.; Zhou, P.; Zhang, Z.; et al. Selective oxidation of 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid using O2 and a photocatalyst of Co-thioporphyrazine bonded to g-C3N4. J. Am. Chem. Soc. 2017, 139, 14775-82.

43. Peng, D.; Zhang, Y.; Xu, G.; Tian, Y.; Ma, D.; Zhang, Y. Novel p-n heterojunctions incorporating NiS1.03@C with nitrogen doped TiO2 for enhancing visible-light photocatalytic performance towards cyclohexane oxidation. Appl. Surf. Sci. 2021, 566, 150676.

44. Yang, M. Q.; Zhang, N.; Xu, Y. J. Synthesis of fullerene-, carbon nanotube-, and graphene-TiO2 nanocomposite photocatalysts for selective oxidation: a comparative study. ACS. Appl. Mater. Interf. 2013, 5, 1156-64.

45. Zhang, M.; Yu, Z.; Xiong, J.; Zhang, R.; Liu, X.; Lu, X. One-step hydrothermal synthesis of CdxInyS(x+1.5y) for photocatalytic oxidation of biomass-derived 5-hydroxymethylfurfural to 2,5-diformylfuran under ambient conditions. Appl. Catal. B. 2022, 300, 120738.

Chemical Synthesis
ISSN 2769-5247 (Online)

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/