REFERENCES

1. Bi, X.; Jiang, Y.; Chen, R.; et al. Rechargeable zinc-air versus lithium-air battery: from fundamental promises toward technological potentials. Adv. Energy. Mater. 2024, 14, 2302388.

2. Dias, G. S.; Costa, J. M.; Almeida, N. A. F. Transition metal chalcogenides carbon-based as bifunctional cathode electrocatalysts for rechargeable zinc-air battery: an updated review. Adv. Colloid. Interface. Sci. 2023, 315, 102891.

3. Du, Q.; Gong, Y.; Khan, M. A.; et al. Regulating non-precious transition metal nitrides bifunctional electrocatalysts through surface/interface nanoengineering for air-cathodes of Zn-air batteries. Green. Energy. Environ. 2022, 7, 16-34.

4. Guo, Y.; Li, Y.; Chen, Y.; Wang, P.; Xie, Y.; Yi, T. Rational design of one-dimensional cobalt-related oxygen electrocatalysts toward high-performance zinc-air batteries. Coord. Chem. Rev. 2023, 495, 215383.

5. Lee, S.; Choi, J.; Kim, M.; Park, J.; Park, M.; Cho, J. Material design and surface chemistry for advanced rechargeable zinc-air batteries. Chem. Sci. 2022, 13, 6159-80.

6. Jiang, L.; Luo, X.; Wang, D. A review on system and materials for aqueous flexible metal-air batteries. Carbon. Energy. 2023, 5, e284.

7. Li, J.; Xue, H.; Xu, N.; et al. Co/Ni dual-metal embedded in heteroatom doped porous carbon core-shell bifunctional electrocatalyst for rechargeable Zn-air batteries. Mater. Rep. Energy. 2022, 2, 100090.

8. Kundu, A.; Mallick, S.; Ghora, S.; Raj, C. R. Advanced oxygen electrocatalyst for air-breathing electrode in Zn-air batteries. ACS. Appl. Mater. Interfaces. 2021, 13, 40172-99.

9. Tang, W.; Li, B.; Teng, K.; et al. Advanced noble-metal-free bifunctional electrocatalysts for metal-air batteries. J. Materiomics. 2022, 8, 454-74.

10. Wu, L.; Zhao, R.; Du, G.; et al. Hierarchically porous Fe/N/S/C nanospheres with high-content of Fe-Nx for enhanced ORR and Zn-air battery performance. Green. Energy. Environ. 2023, 8, 1693-702.

11. Kumar, Y.; Mooste, M.; Tammeveski, K. Recent progress of transition metal-based bifunctional electrocatalysts for rechargeable zinc - air battery application. Curr. Opin. Electrochem. 2023, 38, 101229.

12. Lang, X.; Hu, Z.; Wang, C. Bifunctional air electrodes for flexible rechargeable Zn-air batteries. Chin. Chem. Lett. 2021, 32, 999-1009.

13. Kundu, A.; Kuila, T.; Murmu, N. C.; Samanta, P.; Das, S. Metal-organic framework-derived advanced oxygen electrocatalysts as air-cathodes for Zn-air batteries: recent trends and future perspectives. Mater. Horiz. 2023, 10, 745-87.

14. Peng, Z.; Li, Y.; Ruan, P.; et al. Metal-organic frameworks and beyond: the road toward zinc-based batteries. Coord. Chem. Rev. 2023, 488, 215190.

15. Zhan, F.; Liu, S.; He, Q.; et al. Metal-organic framework-derived heteroatom-doped nanoarchitectures for electrochemical energy storage: recent advances and future perspectives. Energy. Storage. Mater. 2022, 52, 685-735.

16. Zhu, Y.; Yue, K.; Xia, C.; et al. Recent advances on MOF derivatives for non-noble metal oxygen electrocatalysts in zinc-air batteries. Nanomicro. Lett. 2021, 13, 137.

17. Akmalia, R.; Balqis, F.; Andriani, M. F.; Irmawati, Y.; Sumboja, A. Well-dispersed NiFe nanoalloy embedded on N-doped carbon nanofibers as free-standing air cathode for all-solid-state flexible zinc-air battery. J. Energy. Storage. 2023, 72, 108743.

18. Hong, Y.; Li, L.; Huang, B.; et al. Molecular control of carbon-based oxygen reduction electrocatalysts through metal macrocyclic complexes functionalization. Adv. Energy. Mater. 2021, 11, 2100866.

19. Qin, D.; Tang, Y.; Ma, G.; et al. Molecular metal nanoclusters for ORR, HER and OER: achievements, opportunities and challenges. Int. J. Hydrogen. Energy. 2021, 46, 25771-81.

20. Lu, X.; Hansen, E. J.; He, G.; Liu, J. Eutectic electrolytes chemistry for rechargeable Zn batteries. Small 2022, 18, e2200550.

21. Vílchez-Cózar, Á.; Armakola, E.; Gjika, M.; et al. Exploiting the multifunctionality of M2+/imidazole-etidronates for proton conductivity (Zn2+) and electrocatalysis (Co2+, Ni2+) toward the HER, OER, and ORR. ACS. Appl. Mater. Interfaces. 2022, 14, 11273-87.

22. Wang, H.; Pei, Y.; Wang, K.; et al. First-row transition metals for catalyzing oxygen redox. Small 2023, 19, e2304863.

23. Li, J.; Wang, C.; Yu, Z.; Chen, Y.; Wei, L. MXenes for Zinc-based electrochemical energy storage devices. Small 2024, 20, e2304543.

24. Xu, H.; Yang, J.; Ge, R.; et al. Carbon-based bifunctional electrocatalysts for oxygen reduction and oxygen evolution reactions: optimization strategies and mechanistic analysis. J. Energy. Chem. 2022, 71, 234-65.

25. Wang, J.; Kong, H.; Zhang, J.; Hao, Y.; Shao, Z.; Ciucci, F. Carbon-based electrocatalysts for sustainable energy applications. Prog. Mater. Sci. 2021, 116, 100717.

26. Xu, X.; Sun, H.; Jiang, S. P.; Shao, Z. Modulating metal-organic frameworks for catalyzing acidic oxygen evolution for proton exchange membrane water electrolysis. SusMat 2021, 1, 460-81.

27. Wang, S.; Che, Z.; Zou, M.; et al. Gorgeous turn-back: rough surface treatment strategy induces Cu-C and N-C active moieties for bifunctional oxygen electrocatalysis. Chem. Eng. J. 2023, 471, 144262.

28. Wang, X.; Wu, Z.; Wang, X.; et al. Bifunctional electrocatalysts derived from cluster-based ternary sulfides for oxygen electrode reactions. Electrochimica. Acta. 2021, 376, 138048.

29. Xu, H.; Huang, C.; Shuai, T.; et al. Noble metal-free N-doped carbon-based electrocatalysts for air electrode of rechargeable zinc-air battery. Sci. China. Mater. 2023, 66, 2953-3003.

30. Song, Y.; Li, W.; Zhang, K.; Han, C.; Pan, A. Progress on bifunctional carbon-based electrocatalysts for rechargeable zinc-air batteries based on voltage difference performance. Adv. Energy. Mater. 2024, 14, 2303352.

31. Kumar, D. B.; Nie, W.; Jiang, Z.; Lee, J.; Maiyalagan, T. Recent progress in transition metal carbides and nitrides based composites as bifunctional oxygen electrocatalyst for zinc air batteries. J. Alloys. Compd. 2023, 960, 170828.

32. Xu, C.; Niu, Y.; Ka-man, A. V.; et al. Recent progress of self-supported air electrodes for flexible Zn-air batteries. J. Energy. Chem. 2024, 89, 110-36.

33. Mechili, M.; Vaitsis, C.; Argirusis, N.; Pandis, P. K.; Sourkouni, G.; Argirusis, C. Research progress in transition metal oxide based bifunctional electrocatalysts for aqueous electrically rechargeable zinc-air batteries. Renew. Sustain. Energy. Rev. 2022, 156, 111970.

34. Cui, M.; Yuan, Y.; Wu, Y.; et al. Graphdiyne-induced CoN/CoS2 heterojunction: boosting efficiency for bifunctional oxygen electrochemistry in zinc-air batteries. ChemSusChem 2024, Online ahead of print.

35. Deng, S. Q.; Zhuang, Z.; Zhou, C. A.; et al. Metal-organic framework derived FeNi alloy nanoparticles embedded in N-doped porous carbon as high-performance bifunctional air-cathode catalysts for rechargeable zinc-air battery. J. Colloid. Interface. Sci. 2023, 641, 265-76.

36. Ren, Y.; Wang, H.; Zhang, T.; et al. Designed preparation of CoS/Co/MoC nanoparticles incorporated in N and S dual-doped porous carbon nanofibers for high-performance Zn-air batteries. Chin. Chem. Lett. 2021, 32, 2243-8.

37. Sheng, J.; Sun, S.; Jia, G.; Zhu, S.; Li, Y. Doping effect on mesoporous carbon-supported single-site bifunctional catalyst for zinc-air batteries. ACS. Nano. 2022, 16, 15994-6002.

38. Zhao, H.; Yao, H.; Wang, S.; et al. Doping-engineered bifunctional oxygen electrocatalyst with Se/Fe-doped Co3O4/N-doped carbon nanosheets as highly efficient rechargeable zinc-air batteries. J. Colloid. Interface. Sci. 2022, 626, 475-85.

39. Ye, D.; Shen, Y.; Mao, H.; et al. Dual-sources directed construction of N-doped carbon nanotube arrays as superior self-supported bifunctional air electrodes for rechargeable/flexible zinc-air batteries. Chem. Eng. J. 2023, 464, 142601.

40. Feng, Y.; Song, K.; Zhang, W.; et al. Efficient ORR catalysts for zinc-air battery: biomass-derived ultra-stable Co nanoparticles wrapped with graphitic layers via optimizing electron transfer. J. Energy. Chem. 2022, 70, 211-8.

41. Wang, Z.; Zhou, L.; Li, R.; et al. Electrocatalytic oxygen reduction of COF-derived porous Fe-Nx nanoclusters/carbon catalyst and application for high performance Zn-air battery. Microporous. Mesoporous. Mater. 2022, 330, 111609.

42. Gu, T.; Sa, R.; Zhang, L.; Li, D.; Wang, R. Engineering interfacial coupling between Mo2C nanosheets and Co@NC polyhedron for boosting electrocatalytic water splitting and zinc-air batteries. Appl. Catal. B. Environ. 2021, 296, 120360.

43. Wang, Z.; Deng, D.; Wang, H.; et al. Engineering Mn-Nx sites on porous carbon via molecular assembly strategy for long-life zinc-air batteries. J. Colloid. Interface. Sci. 2024, 653, 1348-57.

44. Xu, X.; Shu, C.; Jin, R.; et al. Design of nanosheet/nanotube composites of Fe, N-doped carbon for enhanced oxygen reduction in zinc-air batteries. Electrochim. Acta. 2023, 465, 142986.

45. Meng, X.; Yuan, Y.; Feng, J.; et al. Design and synthesis of self-supporting FeCoNi- and N-doped carbon fibers/nanotubes as oxygen bifunctional catalysts for solid-state flexible Zn-air batteries. Electrochim. Acta. 2024, 479, 147648.

46. Fang, C.; Tang, X.; Yi, Q. Adding Fe/dicyandiamide to Co-MOF to greatly improve its ORR/OER bifunctional electrocatalytic activity. Appl. Catal. B. Environ. 2024, 341, 123346.

47. Zheng, H.; Zhong, J.; Liu, X.; et al. Co-modified polyoxovanadoborates derived Co/BN-CNT/VN based bifunctional electrocatalysts for rechargeable zinc-air batteries. J. Colloid. Interface. Sci. 2023, 634, 675-83.

48. Chen, X.; Chen, D.; Li, G.; et al. FeNi incorporated N doped carbon nanotubes from glucosamine hydrochloride as highly efficient bifunctional catalyst for long term rechargeable zinc-air batteries. Electrochim. Acta. 2022, 428, 140938.

49. Wang, M.; Liu, B.; Zhang, H.; Lu, Z.; Xie, J.; Cao, Y. High quality bifunctional cathode for rechargeable zinc-air batteries using N-doped carbon nanotubes constrained CoFe alloy. J. Colloid. Interface. Sci. 2024, 661, 681-9.

50. Chen, J.; Zhu, J.; Li, S.; et al. In situ construction of FeCo alloy nanoparticles embedded in nitrogen-doped bamboo-like carbon nanotubes as a bifunctional electrocatalyst for Zn-air batteries. Dalton. Trans. 2022, 51, 14498-507.

51. Lu, Z.; Xiong, Q.; Fu, R.; et al. In situ construction of N-doped hollow carbon nanotubes anchored Co nanoparticles for bifunctional ORR/OER electrocatalyst. J. Hydrog. Energy. 2024, 61, 203-9.

52. Li, M.; Chen, S.; Li, B.; et al. In situ growing N and O co-doped helical carbon nanotubes encapsulated with CoFe alloy as tri-functional electrocatalyst applied in Zn-air batteries driving water splitting. Electrochim. Acta. 2021, 388, 138587.

53. Zhang, B.; Wu, M.; Zhang, L.; et al. Isolated transition metal nanoparticles anchored on N-doped carbon nanotubes as scalable bifunctional electrocatalysts for efficient Zn-air batteries. J. Colloid. Interface. Sci. 2023, 629, 640-8.

54. Yang, L.; Luo, R.; Wen, X.; Liu, Z.; Fei, Z.; Hu, L. Nanoconfinement effects of Ni@CNT for efficient electrocatalytic oxygen reduction and evolution reaction. J. Alloys. Compd. 2022, 897, 163206.

55. Liu, X.; Fan, L.; Wang, Y.; et al. Nanofiber-based Sm0.5Sr0.5Co0.2Fe0.8O3-δ/N-MWCNT composites as an efficient bifunctional electrocatalyst towards OER/ORR. Int. J. Hydrogen. Energy. 2023, 48, 15555-65.

56. Xin, Y.; Zhang, Y.; Chen, Y.; et al. 3D coordination polymer derived CoNi@GO as a highly efficient OER/ORR bifunctional catalyst for Zn-air rechargeable batteries. J. Alloys. Compd. 2024, 971, 172735.

57. Wu, S.; Deng, D.; Zhang, E.; Li, H.; Xu, L. CoN nanoparticles anchored on ultra-thin N-doped graphene as the oxygen reduction electrocatalyst for highly stable zinc-air batteries. Carbon 2022, 196, 347-53.

58. Zhang, M.; Hu, X.; Xin, Y.; et al. FeNi coordination polymer based highly efficient and durable bifunction oxygen electrocatalyst for rechargeable zinc-air battery. Sep. Purif. Technol. 2023, 308, 122974.

59. Ha, S. J.; Hwang, J.; Kwak, M. J.; Yoon, J. C.; Jang, J. H. Graphene-encapsulated bifunctional catalysts with high activity and durability for zn-air battery. Small 2023, 19, e2300551.

60. Liu, Y.; Bao, J.; Li, Z.; et al. Large-scale defect-rich iron/nitrogen co-doped graphene-based materials as the excellent bifunctional electrocatalyst for liquid and flexible all-solid-state zinc-air batteries. J. Colloid. Interface. Sci. 2022, 607, 1201-14.

61. Etesami, M.; Khezri, R.; Abbasi, A.; et al. Ball mill-assisted synthesis of NiFeCo-NC as bifunctional oxygen electrocatalysts for rechargeable zinc-air batteries. J. Alloys. Compd. 2022, 922, 166287.

62. Du, Y.; Chen, W.; Zhong, Z.; et al. Bifunctional oxygen electrocatalysts with WN@Ni nanostructures implanted on N-doped carbon nanorods for rechargeable Zn-air batteries. J. Alloys. Compd. 2023, 960, 170789.

63. Shin, S.; Yoon, Y.; Park, S.; Shin, M. W. Fabrication of core-shell structured cobalt nanoparticle/carbon nanofiber as a bifunctional catalyst for the oxygen reduction/evolution reactions. J. Alloys. Compd. 2023, 939, 168731.

64. Zhou, Q.; Tian, Y.; Wang, M.; Lei, S.; Xiong, C. Molten salt induced formation of chitosan based carbon nanosheets decorated with CoNx for boosting rechargeable Zn-air batteries. J. Colloid. Interface. Sci. 2023, 641, 842-52.

65. Shi, Q.; Guo, H.; Ou, D.; et al. NiFe-LDH nanosheets anchored on Fe, N decorated carbon nanofibers as efficient bifunctional electrocatalysts for long-term rechargeable Zn-air batteries. J. Energy. Storage. 2023, 72, 108073.

66. Sun, L.; Huang, S.; Zhao, X.; Li, L.; Zhao, X.; Zhang, W. Synergistic effect of Co9S8 and FeS2 inlaid on N-doped carbon nanofibers toward a bifunctional catalyst for Zn-air batteries. Langmuir 2022, 38, 11753-63.

67. Dai, L.; Feng, C.; Luo, Y.; et al. CoFe alloys dispersed on Se, N Co-doped graphitic carbon as efficient bifunctional catalysts for Zn-air batteries. Chemistry 2024, 30, e202303173.

68. Wang, M.; Dong, Q.; Ji, S.; et al. “Coupling-conversion” effect induced by interface-local electric field to improve oxygen reaction kinetics in zinc-air batteries. Chem. Eng. J. 2024, 481, 148601.

69. Hu, C.; Chen, J.; Wang, Y.; Huang, Y.; Wang, S. A telluride-doped porous carbon as highly efficient bifunctional catalyst for rechargeable Zn-air batteries. Electrochim. Acta. 2022, 404, 139606.

70. Chen, K.; Kim, S.; Rajendiran, R.; et al. Enhancing ORR/OER active sites through lattice distortion of Fe-enriched FeNi3 intermetallic nanoparticles doped N-doped carbon for high-performance rechargeable Zn-air battery. J. Colloid. Interface. Sci. 2021, 582, 977-90.

71. Wang, M.; Du, X.; Zhang, M.; Su, K.; Li, Z. From S-rich polyphenylene sulfide to honeycomb-like porous carbon with ultrahigh specific surface area as bifunctional electrocatalysts for rechargeable Zn-air batteries. Carbon 2022, 198, 264-74.

72. Chen, Y.; Huang, J.; Chen, Z.; et al. Molecular engineering toward high-crystallinity yet high-surface-area porous carbon nanosheets for enhanced electrocatalytic oxygen reduction. Adv. Sci. 2022, 9, e2103477.

73. Wang, R.; Yang, H.; Lu, N.; et al. Precise identification of active sites of a high bifunctional performance 3D Co/N-C catalyst in Zinc-air batteries. Chem. Eng. J. 2022, 433, 134500.

74. Yang, T.; Chen, Y.; Liu, Y.; Liu, X.; Gao, S. Self-sacrificial template synthesis of Fe, N co-doped porous carbon as efficient oxygen reduction electrocatalysts towards Zn-air battery application. Chin. Chem. Lett. 2022, 33, 2171-7.

75. Sheng, K.; Li, J.; Li, G.; et al. Ultrafine Fe2C nanocrystals encapsulated in interconnected hollow carbon spheres as ORR electrocatalysts for alkaline/neutral Zn-air batteries. Appl. Surf. Sci. 2022, 601, 154221.

76. Ye, Q.; Li, M.; Hou, S.; Deng, Y.; Luo, J.; Tian, X. Zinc-motivated Fe/Fe5C2/Fe1-xS@Fe-N-C active sites grown on N-doped porous carbon toward efficient oxygen reduction reaction in zinc-air batteries. Dalton. Trans. 2023, 52, 2684-92.

77. Wang, B.; Liu, Q.; Yuan, A.; et al. A facile and green strategy for mass production of dispersive FeCo-rich phosphides@N,P-doped carbon electrocatalysts toward efficient and stable rechargeable Zn-air battery and water splitting. J. Mater. Sci. Technol. 2024, 182, 1-11.

78. Liang, J.; Chen, J.; Wang, G.; Liu, J.; Wang, N.; Shi, Z. Hydrogel-Derived Co3ZnC/Co nanoparticles with heterojunctions supported on N-doped porous carbon and carbon nanotubes for the highly efficient oxygen reduction reaction in Zn-air batteries. ACS. Appl. Mater. Interfaces. 2022, 14, 48789-800.

79. Pang, Y.; Mo, Z.; Wang, H.; Wang, X.; Linkov, V.; Wang, R. Manganese-assisted annealing produces abundant macropores in a carbon aerogel to enhance its oxygen reduction catalytic activity in zinc-air batteries. ACS. Sustainable. Chem. Eng. 2021, 9, 5526-35.

80. Yu, T.; Che, Y.; Fu, H.; et al. N, S dual-doped carbon aerogels-supported Co9S8 nanoparticles as efficient oxygen reduction reaction electrocatalyst for zinc-air battery. J. Alloys. Compd. 2023, 948, 169792.

81. Lin, S.; Chen, Y.; Cao, Y.; Zhang, L.; Feng, J.; Wang, A. Aminouracil-assisted synthesis of CoFe decorated bougainvillea-like N-doped carbon nanoflowers for boosting Zn-air battery and water electrolysis. J. Power. Sources. 2022, 521, 230926.

82. Huang, K.; Xu, Y.; Song, Y.; et al. NiPS3 quantum sheets modified nitrogen-doped mesoporous carbon with boosted bifunctional oxygen electrocatalytic performance. J. Mater. Sci. Technol. 2021, 65, 1-6.

83. Hong, J.; Hyun, S.; Tsipoaka, M.; Samdani, J. S.; Shanmugam, S. RuFe alloy nanoparticle-supported mesoporous carbon: efficient bifunctional catalyst for Li-O2 and Zn-air batteries. ACS. Catal. 2022, 12, 1718-31.

84. Cai, J.; Zhang, X.; Shi, Y.; Ye, Y.; Lin, S. Heterostructural Co||Cu coated with nitrogen-doped carbon as a highly efficient electrocatalyst for oxygen reduction reaction and hydrogen evolution reaction. ACS. Sustainable. Chem. Eng. 2022, 10, 5986-97.

85. Leng, X.; Ling, C.; Lu, X. J.; et al. Hierarchically hollow N-doped carbon-cobalt nanoparticle heterointerface for efficient bifunctional oxygen electrocatalysis. Dalton. Trans. 2022, 51, 15376-84.

86. Lai, C.; Liu, X.; Cao, C.; et al. Structural regulation of N-doped carbon nanocages as high-performance bifunctional electrocatalysts for rechargeable Zn-air batteries. Carbon 2021, 173, 715-23.

87. Gao, J.; Chen, S.; Xie, C.; et al. Tailoring hierarchically porous nanoarchitectured N-doped carbon decorated with FeIIN4 moiety and encapsulated Fe/Fe3C nanoparticles as a synergistic catalyst for ORR in Zn-air battery. J. Alloys. Compd. 2023, 968, 172189.

88. Guan, X.; Wu, Q.; Li, H.; et al. Ultrafine Fe2C in porous N-doped carbon by polydopamine-silane Co-deposition for efficient oxygen reduction reaction and zinc-air battery. Int. J. Hydrogen. Energy. 2023, 48, 9659-68.

89. Zhang, J.; Cui, B.; Jiang, S.; Liu, H.; Dou, M. Construction of three-dimensional cobalt sulfide/multi-heteroatom co-doped porous carbon as an efficient trifunctional electrocatalyst. Nanoscale 2022, 14, 9849-59.

90. Wang, H.; Ren, J.; Weng, C.; Lv, X.; Yuan, Z. Hierarchical porous N,S-codoped carbon with trapped Mn species for efficient pH-universal electrochemical oxygen reduction in Zn-air battery. J. Ind. Eng. Chem. 2021, 100, 92-8.

91. Huang, L.; Zuo, L.; Yu, T.; et al. Two-dimensional Co/Co9S8 nanoparticles decorated N, S dual-doped carbon composite as an efficient electrocatalyst for zinc-air battery. J. Alloys. Compd. 2022, 897, 163108.

92. He, M.; Shu, C.; Zheng, R.; et al. Interfacial interaction between molybdenum phosphide and N, P co-doped hollow carbon fibers boosting the oxygen electrode reactions in zinc-air batteries. Electrochim. Acta. 2021, 395, 139211.

93. Zhang, J.; Sun, Y.; Xiao, M.; Liu, J. Candied haws-like Fe-N-C catalysts with broadened carbon interlayer spacing for efficient zinc-air battery. ACS. Appl. Mater. Interfaces. 2023, 15, 953-62.

94. Cao, M.; Liu, Y.; Sun, K.; et al. Coupling Fe3 C nanoparticles and N-doping on wood-derived carbon to construct reversible cathode for Zn-air batteries. Small 2022, 18, e2202014.

95. Chen, X.; Liu, Q.; Bai, T.; Wang, W.; He, F.; Ye, M. Nickel and cobalt sulfide-based nanostructured materials for electrochemical energy storage devices. Chem. Eng. J. 2021, 409, 127237.

96. Yu, H.; Fan, F.; He, C.; et al. Sulfur-modulated FeNi nanoalloys as bifunctional oxygen electrode for efficient rechargeable aqueous Zn-air batteries. Sci. China. Mater. 2022, 65, 3007-16.

97. Guo, M.; Xu, M.; Qu, Y.; et al. Electronic/mass transport increased hollow porous Cu3P/MoP nanospheres with strong electronic interaction for promoting oxygen reduction in Zn-air batteries. Appl. Catal. B. Environ. 2021, 297, 120415.

98. Huo, L.; Lv, M.; Li, M.; et al. Amorphous MnO2 lamellae encapsulated covalent triazine polymer-derived multi-heteroatoms-doped carbon for ORR/OER bifunctional electrocatalysis. Adv. Mater. 2024, 36, e2312868.

99. Shi, J.; Guo, X.; Liu, S.; et al. An altered nanoemulsion assembly strategy for in-situ synthesis of Co2P/NP-C nanospheres as advanced oxygen reduction electrocatalyst for zinc-air batteries. Compos. Part. B. Eng. 2022, 231, 109589.

100. Wang, Y.; Gan, R.; Zhao, S.; et al. B, N, F tri-doped lignin-derived carbon nanofibers as an efficient metal-free bifunctional electrocatalyst for ORR and OER in rechargeable liquid/solid-state Zn-air batteries. Compos. Part. B. Eng. 2022, 598, 153891.

101. Pan, Y.; Yang, Q.; Qiu, F.; et al. Sulfur atom modulated Fe-Nx species embedded in hollow porous carbon spheres for efficient oxygen reduction and high-performance zinc-air batteries. Mater. Today. Chem. 2023, 34, 101787.

102. Xu, F.; Zhao, J.; Wang, J.; Guan, T.; Li, K. Strong coordination ability of sulfur with cobalt for facilitating scale-up synthesis of Co9S8 encapsulated S, N co-doped carbon as a trifunctional electrocatalyst for oxygen reduction reaction, oxygen and hydrogen evolution reaction. J. Colloid. Interface. Sci. 2022, 608, 2623-32.

103. Wang, G.; Gao, H.; Yan, Z.; et al. Copper nanodot-embedded nitrogen and fluorine co-doped porous carbon nanofibers as advanced electrocatalysts for rechargeable zinc-air batteries. J. Colloid. Interface. Sci. 2023, 647, 163-73.

104. Rao, P.; Liu, Y.; Su, Y.; et al. S, N co-doped carbon nanotube encased Co NPs as efficient bifunctional oxygen electrocatalysts for zinc-air batteries. Chem. Eng. J. 2021, 422, 130135.

105. Borchers, A.; Pieler, T. Programming pluripotent precursor cells derived from Xenopus embryos to generate specific tissues and organs. Genes 2010, 1, 413-26.

106. Wu, Q.; Xie, T.; Zhang, L.; et al. N,S co-doped porous carbon with Co9S8 prepared with a Co-FF-derived Co3O4 template: a bi-functional electrocatalyst for rechargeable zinc-air batteries. Dalton. Trans. 2023, 52, 14435-42.

107. Wang, S.; Wang, J.; Wang, X.; Li, L.; Qin, J.; Cao, M. Carbon hybrid with 3D nano-forest architecture in-situ catalytically constructed by CoFe alloy as advanced multifunctional electrocatalysts for Zn-air batteries-driven water splitting. J. Energy. Chem. 2021, 53, 422-32.

108. Zou, J.; Dong, H.; Wu, H.; et al. Laser-induced rapid construction of Co/N-doped honeycomb-like carbon networks as oxygen electrocatalyst used in zinc-air batteries. Carbon 2022, 200, 462-71.

109. Shen, Y.; He, S.; Zhuang, Y.; et al. Polypyrrole template-assisted synthesis of tubular Fe-NC nanostructure-based electrocatalysts for efficient oxygen reduction reaction in rechargeable zinc-air battery. ACS. Appl. Nano. Mater. 2023, 6, 16873-81.

110. Zou, Q.; Xu, F.; Ma, J.; Zhang, H.; Wang, Y. Carboxylate-assisted ZIF-derived Co nanoclusters anchoring hierarchically porous carbon as high-efficient zinc-air batteries cathode catalysts. J. Alloys. Compd. 2022, 923, 166393.

111. Qin, J.; Wang, B.; Zhang, Y.; et al. Construction of 1D/2D hierarchical carbon structure encapsulating FeCo alloys by one-step annealing leaf-like ZnFeCo-ZIF for highly-efficient bifunctional oxygen electrocatalysis in reversible zinc-air battery. J. Alloys. Compd. 2024, 982, 173710.

112. Xiong, Y.; Jiang, Z.; Gong, L.; et al. Construction of Co/FeCo@Fe(Co)3O4 heterojunction rich in oxygen vacancies derived from metal-organic frameworks using O2 plasma as a high-performance bifunctional catalyst for rechargeable zinc-air batteries. J. Colloid. Interface. Sci. 2023, 649, 36-48.

113. Chang, H.; Shi, L.; Chen, Y.; Wang, P.; Yi, T. Advanced MOF-derived carbon-based non-noble metal oxygen electrocatalyst for next-generation rechargeable Zn-air batteries. Coord. Chem. Rev. 2022, 473, 214839.

114. Xue, S.; Qin, J.; Zhang, X.; et al. In situ constructing Co/Co-Ox/Co-Nx diverse active sites on hollow porous carbon spheres derived from Co-MOF for efficient bifunctional electrocatalysis in rechargeable Zn-air. Coord. Chem. Rev. 2023, 37, 101209.

115. Zhang, S.; Yang, L.; Yang, T.; et al. Pomegranate-like structured FeNi-nanodots@FeNi LDH composite as a high performance bifunctional catalyst for oxygen electrocatalytic reactions in zinc-air batteries. Compos. Commun. 2023, 44, 101757.

116. Zheng, H.; Xu, N.; Hou, B.; et al. Bimetallic metal-organic framework-derived graphitic carbon-coated small Co/VN nanoparticles as advanced trifunctional electrocatalysts. ACS. Appl. Mater. Interfaces. 2021, 13, 2462-71.

117. Yang, C.; Shang, S.; Gu, Q.; Shang, J.; Li, X. Metal-organic framework-derived carbon nanotubes with multi-active Fe-N/Fe sites as a bifunctional electrocatalyst for zinc-air battery. J. Energy. Chem. 2022, 66, 306-13.

118. Xu, C.; Zuo, J.; Wang, J.; Chen, Z. Hierarchically structured Mo1-2C/Co-encased carbon nanotubes with multi-component synergy as bifunctional oxygen electrocatalyst for rechargeable Zn-air battery. J. Power. Sources. 2024, 595, 234063.

119. Xu, Z.; Chen, G.; Yang, F.; et al. Graphene-supported Fe/Ni single atoms and FeNi alloy nanoparticles as bifunctional oxygen electrocatalysts for rechargeable zinc-air batteries. Electrochim. Acta. 2023, 458, 142549.

120. Luo, Y.; Wen, M.; Zhou, J.; Wu, Q.; Wei, G.; Fu, Y. Highly-exposed Co-CoO derived from nanosized ZIF-67 on N-doped porous carbon foam as efficient electrocatalyst for zinc-air battery. Small 2023, 19, e2302925.

121. Hao, M.; Li, T.; Lin, L.; et al. Hollow Ti3C2Tx MXene sphere-based ZIF-67 derived central radiative cobalt-tipped carbon nanotubes electrocatalysts for ORR and OER. Colloids. Surf. A. Physicochem. Eng. Asp. 2024, 688, 133626.

122. Zhang, F.; Chen, L.; Zhang, Y.; et al. Engineering Co/CoO heterojunctions stitched in mulberry-like open-carbon nanocages via a metal-organic frameworks in-situ sacrificial strategy for performance-enhanced zinc-air batteries. Chem. Eng. J. 2022, 447, 137490.

123. Zhao, R.; Wu, L.; Chen, R.; Sun, P.; Chen, T. In-situ growth of cobalt manganate spinel nanodots on carbon black toward high-performance zinc-air battery: dual functions of 3-aminopropyltriethoxysilane. J. Colloid. Interface. Sci. 2022, 608, 386-95.

124. Mi, H.; Li, L.; Zeng, C.; et al. Cuboid-like phosphorus-doped metal-organic framework-derived CoSe2 on carbon cloth as an advanced bifunctional oxygen electrocatalyst for rechargeable zinc-air batteries. J. Colloid. Interface. Sci. 2023, 633, 424-31.

125. Shahbazi, F. F.; Rahmanifar, M. S.; Noori, A.; et al. Trilayer metal-organic frameworks as multifunctional electrocatalysts for energy conversion and storage applications. J. Am. Chem. Soc. 2022, 144, 3411-28.

126. Sun, Q.; Zhu, K.; Ji, X.; et al. MOF-derived three-dimensional ordered porous carbon nanomaterial for efficient alkaline zinc-air batteries. Sci. China. Mater. 2022, 65, 1453-62.

127. Li, S.; Zhou, Y.; Xu, C.; et al. ZIFs-derived hollow nanostructures via a strong/weak coetching strategy for long-life rechargeable Zn-air batteries. Small 2024, 20, e2309932.

128. Liu, X.; Wang, L.; Zhang, G.; et al. Zinc assisted epitaxial growth of N-doped CNTs-based zeolitic imidazole frameworks derivative for high efficient oxygen reduction reaction in Zn-air battery. Chem. Eng. J. 2021, 414, 127569.

129. Wang, L.; Xu, M.; Li, H.; et al. Mn-doped Zn metal-organic framework-derived porous N-doped carbon composite as a high-performance nonprecious electrocatalyst for oxygen reduction and aqueous/flexible zinc-air batteries. Inorg. Chem. 2023, 62, 13284-92.

130. Gao, X.; Xu, Z.; Li, G. MOF-driven ultrafine Co9S8 nanocrystals embedded in N, S-codoped multilayer-assembled carbon nanoplates for efficient bifunctional oxygen electrocatalysis. Chem. Eng. J. 2022, 431, 133385.

131. Cao, Y.; Wang, M.; Wang, H.; Han, C.; Pan, F.; Sun, J. Covalent organic framework for rechargeable batteries: mechanisms and properties of ionic conduction. Adv. Energy. Mater. 2022, 12, 2200057.

132. Wu, Z.; Feng, L.; Lu, Z.; et al. Covalent organic frameworks/carbon nanotubes composite with cobalt(II) pyrimidine sites for bifunctional oxygen electrocatalysis. Nano. Mater. Sci. 2024, 6, 419-27.

133. Hu, S.; Zhu, M. Recent advances in carbon-based non-noble single-atom catalysts for rechargeable zinc-air batteries. Curr. Opin. Chem. Eng. 2023, 41, 100926.

134. Xie, S.; Jin, H.; Wang, C.; et al. A comparison study on single metal atoms (Fe, Co, Ni) within nitrogen-doped graphene for oxygen electrocatalysis and rechargeable Zn-air batteries. Chin. Chem. Lett. 2023, 34, 107681.

135. Wu, H.; Xu, X.; Wu, J.; et al. Atomic engineering modulates oxygen reduction of hollow carbon matrix confined single metal-nitrogen sites for zinc-air batteries. Small 2023, 19, e2301327.

136. Sun, J.; Leng, P.; Xie, Y.; et al. Co single atoms and Co nanoparticle relay electrocatalyst for rechargeable zinc air batteries. Appl. Catal. B. Environ. 2022, 319, 121905.

137. Najam, T.; Shah, S. S. A.; Ibraheem, S.; et al. Single-atom catalysis for zinc-air/O2 batteries, water electrolyzers and fuel cells applications. Energy. Storage. Mater. 2022, 45, 504-40.

138. Wang, Y.; Hu, F.; Mi, Y.; Yan, C.; Zhao, S. Single-metal-atom catalysts: an emerging platform for electrocatalytic oxygen reduction. Chem. Eng. J. 2021, 406, 127135.

139. Jiao, C.; Xu, Z.; Shao, J.; et al. High-density atomic Fe-N4/C in tubular, biomass-derived, nitrogen-rich porous carbon as air-electrodes for flexible Zn-air batteries. Adv. Funct. Mater. 2023, 33, 2213897.

140. Zhang, W.; Fan, K.; Chuang, C.; et al. Molten salt assisted fabrication of Fe@FeSA-N-C oxygen electrocatalyst for high performance Zn-air battery. J. Energy. Chem. 2021, 61, 612-21.

141. Zhu, S.; Wu, T.; Liao, M.; Meng, J.; Xie, Y.; Lu, C. Regulating the coordination environment of atomically dispersed Fe-N4 moieties in carbon enables efficient oxygen reduction for Zn-air batteries. Chem. Eng. J. 2024, 484, 149693.

142. Li, G.; Liu, J.; Xu, C.; et al. Regulating the Fe-spin state by Fe/Fe3C neighbored single Fe-N4 sites in defective carbon promotes the oxygen reduction activity. Energy. Storage. Mater. 2023, 56, 394-402.

143. Liu, X.; Wu, J.; Luo, Z.; et al. Co2P-assisted atomic Co-N4 active sites with a tailored electronic structure enabling efficient ORR/OER for rechargeable Zn-air batteries. ACS. Appl. Mater. Interfaces. 2023, Online ahead of print.

144. Li, C.; Yuan, M.; Liu, Y.; et al. Graphite-N modified single Fe atom sites embedded in hollow leaf-like nanosheets as air electrodes for liquid and flexible solid-state Zn-air batteries. Chem. Eng. J. 2023, 477, 146988.

145. Zhao, Y.; Wu, H.; Wang, Y.; et al. Sulfur coordination engineering of molybdenum single-atom for dual-functional oxygen reduction/evolution catalysis. Energy. Storage. Mater. 2022, 50, 186-95.

146. Zhang, S.; Yang, W.; Liang, Y.; Yang, X.; Cao, M.; Cao, R. Template-free synthesis of non-noble metal single-atom electrocatalyst with N-doped holey carbon matrix for highly efficient oxygen reduction reaction in zinc-air batteries. Appl. Catal. B. Environ. 2021, 285, 119780.

147. Pan, L.; Chen, D.; Pei, P.; Huang, S.; Ren, P.; Song, X. A novel structural design of air cathodes expanding three-phase reaction interfaces for zinc-air batteries. Appl. Energy. 2021, 290, 116777.

148. Villanueva-martínez, N.; Alegre, C.; Martínez-visús, I.; Lázaro, M. Bifunctional oxygen electrocatalysts based on non-critical raw materials: carbon nanostructures and iron-doped manganese oxide nanowires. Catal. Today. 2023, 420, 114083.

149. Wu, J.; Shen, X.; Wang, H.; et al. Electronic structure modification of FeWO4 through F doping for enhanced oxygen reduction performance in zinc-air batteries. Mater. Today. Phys. 2023, 38, 101274.

150. Tang, W.; Teng, K.; Guo, W.; et al. Defect-engineered Co3O4 @nitrogen-deficient graphitic carbon nitride as an efficient bifunctional electrocatalyst for high-performance metal-air batteries. Small 2022, 18, e2202194.

151. Lei, Y.; Xiang, Y.; Xu, C.; et al. Pre-implanting metal oxides to endow the N-doped carbon with boosted bifunctional catalytic activities towards oxygen reduction and oxygen evolution reactions. J. Alloys. Compd. 2024, 980, 173590.

152. Anand, P.; Wong, M.; Fu, Y. Perovskite oxide composites for bifunctional oxygen electrocatalytic activity and zinc-air battery application- a mini-review. Energy. Stor. Mater. 2023, 58, 362-80.

153. Wang, B.; Zhao, P.; Feng, J.; et al. Carbon-based 0D/1D/2D assembly with desired structures and defect states as non-metal bifunctional electrocatalyst for zinc-air battery. J. Colloid. Interface. Sci. 2021, 588, 184-95.

154. Zhang, W.; Pu, W.; Qu, Y.; Yang, H.; Liu, Y. Facile synthesis of ultrathin S-N co-doped carbon nanosheet as ORR electrocatalysts for application in sustainable zinc-air battery. Electrochim. Acta. 2023, 462, 142800.

155. Wang, X.; Raghupathy, R. K. M.; Querebillo, C. J.; et al. Interfacial covalent bonds regulated electron-deficient 2D black phosphorus for electrocatalytic oxygen reactions. Adv. Mater. 2021, 33, e2008752.

156. Niu, Y.; Teng, X.; Gong, S.; Liu, X.; Xu, M.; Chen, Z. Boosting oxygen electrocatalysis for flexible zinc-air batteries by interfacing iron group metals and manganese oxide in porous carbon nanowires. Energy. Stor. Mater. 2021, 43, 42-52.

157. Chen, T.; Wu, J.; Zhu, C.; et al. Rational design of iron single atom anchored on nitrogen doped carbon as a high-performance electrocatalyst for all-solid-state flexible zinc-air batteries. Chem. Eng. J. 2021, 405, 125956.

158. Yang, X.; Zheng, X.; Li, H.; et al. Non-noble-metal catalyst and Zn/graphene film for low-cost and ultra-long-durability solid-state Zn-air batteries in harsh electrolytes. Adv. Funct. Mater. 2022, 32, 2200397.

Chemical Synthesis
ISSN 2769-5247 (Online)

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/