REFERENCES

1. Lee YG, Yoo G, Jo YR, An HR, Koo BR, An GH. Interfacial electrochemical media-engineered tunable vanadium zinc hydrate oxygen defect for enhancing the redox reaction of zinc-ion hybrid supercapacitors. Adv Energy Mater. 2023;13:2300630.

2. Guo G, Ji C, Mi H, et al. Zincophilic anionic hydrogel electrolyte with interfacial specific adsorption of solvation structures for durable zinc ion hybrid supercapacitors. Adv Funct Mater. 2024;34:2308405.

3. Li Y, Peng X, Li X, et al. Functional ultrathin separators proactively stabilizing zinc anodes for zinc-based energy storage. Adv Mater. 2023;35:2300019.

4. Wang L, Huang M, Huang J, et al. Coupling of EDLC and the reversible redox reaction: oxygen functionalized porous carbon nanosheets for zinc-ion hybrid supercapacitors. J Mater Chem A. 2021;9:15404-14.

5. Yang G, Huang J, Wan X, et al. A low cost, wide temperature range, and high energy density flexible quasi-solid-state zinc-ion hybrid supercapacitors enabled by sustainable cathode and electrolyte design. Nano Energy. 2021;90:106500.

6. Jian W, Zhang W, Wei X, et al. Engineering pore nanostructure of carbon cathodes for zinc ion hybrid supercapacitors. Adv Funct Mater. 2022;32:2209914.

7. Xue B, Liu C, Wang X, et al. Urea-boosted gas-exfoliation synthesis of lignin-derived porous carbon for zinc ion hybrid supercapacitors. Chem Eng J. 2024;480:147994.

8. Tekin B, Topcu Y. Novel hemp biomass-derived activated carbon as cathode material for aqueous zinc-ion hybrid supercapacitors: synthesis, characterization, and electrochemical performance. J Energy Storage. 2024;77:109879.

9. Wu S, Chen Y, Jiao T, et al. An aqueous Zn-ion hybrid supercapacitor with high energy density and ultrastability up to 80 000 cycles. Adv Energy Mater. 2019;9:1902915.

10. Liu P, Gao Y, Tan Y, et al. Rational design of nitrogen doped hierarchical porous carbon for optimized zinc-ion hybrid supercapacitors. Nano Res. 2019;12:2835-41.

11. Liu T, Zhou Z, Guo Y, Guo D, Liu G. Block copolymer derived uniform mesopores enable ultrafast electron and ion transport at high mass loadings. Nat Commun. 2019;10:675.

12. Wang M, Cheng Y, Zhang H, et al. Nature-inspired interconnected macro/meso/micro-porous MXene electrode. Adv Funct Mater. 2023;33:2211199.

13. Li HY, Li C, Wang YY, et al. Pore structure unveiling effect to boost lithium-selenium batteries: selenium confined in hierarchically porous carbon derived from aluminum based MOFs. Chem Synth. 2023;3:30.

14. An GH. Ultrafast long-life zinc-ion hybrid supercapacitors constructed from mesoporous structured activated carbon. Appl Surf Sci. 2020;530:147220.

15. Yang S, Cui Y, Yang G, et al. ZnCl2 induced hierarchical porous carbon for zinc-ion hybrid supercapacitors. J Power Sources. 2023;554:232347.

16. Poudel MB, Kim HJ. Confinement of Zn-Mg-Al-layered double hydroxide and α-Fe2O3 nanorods on hollow porous carbon nanofibers: a free-standing electrode for solid-state symmetric supercapacitors. Chem Eng J. 2022;429:132345.

17. Yuksel R, Buyukcakir O, Panda PK, et al. Necklace-like nitrogen-doped tubular carbon 3D frameworks for electrochemical energy storage. Adv Funct Mater. 2020;30:1909725.

18. Gu Q, Huang R, Xu C, et al. Nanodiamond derived N-doped sp3@sp2 hybrid carbocatalysts for the aerobic oxidative synthesis of 2-substituted benzoxazoles. Chem Synth. 2023;3:21.

19. Cao N, Zhang N, Wang K, Yan K, Xie P. High-throughput screening of B/N-doped graphene supported single-atom catalysts for nitrogen reduction reaction. Chem Synth. 2023;3:23.

20. Gupta H, Dahiya Y, Rathore HK, Awasthi K, Kumar M, Sarkar D. Energy-dense zinc ion hybrid supercapacitors with S, N dual-doped porous carbon nanocube based cathodes. ACS Appl Mater Interfaces. 2023;15:42685-96.

21. Ji F, Gou S, Tang J, et al. High-performance Zn-ion hybrid supercapacitor enabled by a lightweight polyimide-based anode. Chem Eng J. 2023;474:145786.

22. He H, Lian J, Chen C, Xiong Q, Zhang M. Super hydrophilic carbon fiber film for freestanding and flexible cathodes of zinc-ion hybrid supercapacitors. Chem Eng J. 2021;421:129786.

23. Lee YG, An GH. Synergistic effects of phosphorus and boron co-incorporated activated carbon for ultrafast zinc-ion hybrid supercapacitors. ACS Appl Mater Interfaces. 2020;12:41342-9.

24. Wang K, Chen Y, Liu Y, et al. Plasma boosted N, P, O co-doped carbon microspheres for high performance Zn ion hybrid supercapacitors. J Alloy Compd. 2022;901:163588.

25. Dang Z, Li X, Li Y, Dong L. Heteroatom-rich carbon cathodes toward high-performance flexible zinc-ion hybrid supercapacitors. J Colloid Interface Sci. 2023;644:221-9.

26. Zhang X, Cao E, Tian Y, et al. Synthesis of coal tar pitch-derived heteroatom-doped porous carbon materials for aqueous zinc-ion hybrid supercapacitors. Carbon Resour Convers. 2022;5:193-9.

27. Yi Z, Chen G, Hou F, Wang L, Liang J. Strategies for the stabilization of Zn metal anodes for Zn-ion batteries. Adv Energy Mater. 2021;11:2003065.

28. Zhang P, Li Y, Wang G, et al. Zn-ion hybrid micro-supercapacitors with ultrahigh areal energy density and long-term durability. Adv Mater. 2019;31:1806005.

29. Zhang J, Zhao H, Li J, et al. In situ encapsulation of iron complex nanoparticles into biomass-derived heteroatom-enriched carbon nanotubes for high-performance supercapacitors. Adv Energy Mater. 2019;9:1803221.

30. Wang D, Fang G, Xue T, Ma J, Geng G. A melt route for the synthesis of activated carbon derived from carton box for high performance symmetric supercapacitor applications. J Power Sources. 2016;307:401-9.

31. Hou J, Cao C, Idrees F, Ma X. Hierarchical porous nitrogen-doped carbon nanosheets derived from silk for ultrahigh-capacity battery anodes and supercapacitors. ACS Nano. 2015;9:2556-64.

32. Mehdi R, Naqvi SR, Khoja AH, Hussain R. Biomass derived activated carbon by chemical surface modification as a source of clean energy for supercapacitor application. Fuel. 2023;348:128529.

33. Thommes M, Kaneko K, Neimark AV, et al. Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure Appl Chem. 2015;87:1051-69.

34. Xie RL, Zong ZM, Liu FJ, et al. Nitrogen-doped porous carbon foams prepared from mesophase pitch through graphitic carbon nitride nanosheet templates. RSC Adv. 2015;5:45718-24.

35. Liu D, Zhou C, Wang G, et al. Active Pd nanoclusters supported on nitrogen/amino co-functionalized carbon for highly efficient dehydrogenation of formic acid. Chem Synth. 2023;3:24.

36. Logeshwaran N, Ramakrishnan S, Chandrasekaran SS, et al. An efficient and durable trifunctional electrocatalyst for zinc-air batteries driven overall water splitting. Appl Catal B Environ. 2021;297:120405.

37. Cao Z, Fu J, Wu M, Hua T, Hu H. Synchronously manipulating Zn2+ transfer and hydrogen/oxygen evolution kinetics in MXene host electrodes toward symmetric Zn-ions micro-supercapacitor with enhanced areal energy density. Energy Storage Mater. 2021;40:10-21.

38. Augustyn V, Come J, Lowe MA, et al. High-rate electrochemical energy storage through Li+ intercalation pseudocapacitance. Nat Mater. 2013;12:518-22.

39. Lu Y, Li Z, Bai Z, et al. High energy-power Zn-ion hybrid supercapacitors enabled by layered B/N co-doped carbon cathode. Nano Energy. 2019;66:104132.

40. Liu P, Liu W, Huang Y, Li P, Yan J, Liu K. Mesoporous hollow carbon spheres boosted, integrated high performance aqueous Zn-ion energy storage. Energy Storage Mater. 2020;25:858-65.

41. Leng M, Bi J, Xing Z, et al. A new perspective on the composition-structure-property relationships on Nb/Mo/Cr-doped O3-type layered oxide as cathode materials for sodium-ion batteries. Chem Eng J. 2021;413:127824.

42. Zhang R, Tian Y, Otitoju T, Feng Z, Wang Y, Sun T. Sand-fixation model for interface engineering of layered titania and N/O-doped carbon composites to enhance potassium/sodium storage. Small. 2023;19:2302148.

Chemical Synthesis
ISSN 2769-5247 (Online)

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/