REFERENCES
1. Wang G, Li Z, Li C, Zhang S. Preparation of methyl acrylate from methyl acetate and methanol with mild catalysis of cobalt complex. Chem Eng J 2019;359:863-73.
2. Xu A, Wang Y, Ge H, Chen S, Li Y, Lu W. An outstanding Cr-doped catalyst for selective oxidation of propane to acrylic acid. Chin J Catal 2013;34:2183-91.
3. Fang W, Ge Q, Yu J, Xu H. Catalytic selective oxidation of propane to acrylic acid in a fixed-bed reactor with an O2-distributor. Ind Eng Chem Res 2011;50:1962-7.
4. Xie M, Ni Y, Fang X, et al. Nano-sized H-ZSM-5 zeolite catalyzes aldol condensation reaction to prepare methyl acrylate and acrylic acid. Catal Sci Technol 2022;12:5171-7.
5. He T, Qu Y, Wang J. Aldol condensation reaction of methyl acetate and formaldehyde over cesium oxide supported on silica gel: an experimental and theoretical study. Catal Lett 2019;149:373-89.
6. Ma Z, Ma X, Liu H, Zhu W, Guo X, Liu Z. One-step aldol condensation reaction of dimethoxymethane and methyl acetate over supported Cs/ZSM-35 zeolite catalysts. Chin J Catal 2018;39:1129-37.
7. Gautam P, Neha, Upadhyay S, Dubey S. Bio-methanol as a renewable fuel from waste biomass: current trends and future perspective. Fuel 2020;273:117783.
8. Khalameida S, Nebesnyi R, Pikh Z, et al. Catalytic aldol condensation of formaldehyde with acetic acid on titanium phosphates modified by different techniques. Reac Kinet Mech Cat 2018;125:807-25.
9. Ma Z, Ma X, Ni Y, et al. HZSM-35 zeolite catalyzed aldol condensation reaction to prepare acrylic acid and its ester: effect of its acidic property. Chin J Catal 2018;39:1762-9.
10. Li J, Tai J, Davis RJ. Hydrocarbon oxidation and aldol condensation over basic zeolite catalysts. Catal Today 2006;116:226-33.
11. Bao Q, Bu T, Yan J, et al. Synthesis of methyl acrylate by aldol condensation of methyl acetate with formaldehyde over Al2O3-supported barium catalyst. Catal Lett 2017;147:1540-50.
12. Zhang G, Zhang H, Yang D, Li C, Peng Z, Zhang S. Catalysts, kinetics and process optimization for the synthesis of methyl acrylate over Cs-P/γ-Al2O3. Catal Sci Technol 2016;6:6417-30.
13. Yang D, Li D, Yao H, et al. Reaction of formalin with acetic acid over vanadium-phosphorus oxide bifunctional catalyst. Ind Eng Chem Res 2015;54:6865-73.
14. Dumitriu E, Hulea V, Fechete I, Auroux A, Lacaze J, Guimon C. The aldol condensation of lower aldehydes over MFI zeolites with different acidic properties. Microporous Mesoporous Materials 2001;43:341-59.
15. Wang Y, Chen H, Zhao G, Liu M, Lang X, Zhu Z. Influence of support properties on the activity of basic catalysts for aldol condensation of formaldehyde and methyl acetate in a continuous-flow reactor. J Flow Chem 2015;5:87-94.
16. He T, Qu Y, Wang J. Experimental and theoretical study for vapor phase aldol condensation of methyl acetate and formaldehyde over alkali metal oxides supported on SBA-15. Ind Eng Chem Res 2018;57:2773-86.
17. Yan J, Zhang C, Ning C, et al. Vapor phase condensation of methyl acetate with formaldehyde to preparing methyl acrylate over cesium supported SBA-15 catalyst. J Ind Eng Chem 2015;25:344-51.
18. Zeidan R, Davis M. The effect of acid-base pairing on catalysis: an efficient acid-base functionalized catalyst for aldol condensation. J Catal 2007;247:379-82.
19. Tichit D, Lutic D, Coq B, Durand R, Teissier R. The aldol condensation of acetaldehyde and heptanal on hydrotalcite-type catalysts. J Catal 2003;219:167-75.
20. Bao Q, Zhu W, Yan J, et al. Vapor phase aldol condensation of methyl acetate with formaldehyde over a Ba-La/Al2O3 catalyst: the stabilizing role of La and effect of acid-base properties. RSC Adv 2017;7:52304-11.
21. Guo X, Yang D, Zuo C, Peng Z, Li C, Zhang S. Catalysts, process optimization, and kinetics for the production of methyl acrylate over vanadium phosphorus oxide catalysts. Ind Eng Chem Res 2017;56:5860-71.
22. Zhao H, Zuo C, Yang D, Li C, Zhang S. Effects of support for vanadium phosphorus oxide catalysts on vapor-phase aldol condensation of methyl acetate with formaldehyde. Ind Eng Chem Res 2016;55:12693-702.
23. Hu J, Lu Z, Yin H, et al. Aldol condensation of acetic acid with formaldehyde to acrylic acid over SiO2-, SBA-15-, and HZSM-5-supported V-P-O catalysts. J Ind Eng Chem 2016;40:145-51.
24. Yang D, Sararuk C, Suzuki K, Li Z, Li C. Effect of calcination temperature on the catalytic activity of VPO for aldol condensation of acetic acid and formalin. Chem Eng J 2016;300:160-8.
25. Feng X, Sun B, Yao Y, Su Q, Ji W, Au C. Renewable production of acrylic acid and its derivative: New insights into the aldol condensation route over the vanadium phosphorus oxides. J Catal 2014;314:132-41.
26. Zhang C, Xu Z, Wan K, Liu Q. Synthesis, characterization and catalytic properties of nitrogen-incorporated ZSM-5 molecular sieves with bimodal pores. Appl Catal A Gen 2004;258:55-61.
27. Lesthaeghe D, Van Speybroeck V, Marin GB, Waroquier M. DFT investigation of alkoxide vs alkylammonium formation in amine-substituted zeolites. J Phys Chem B 2005;109:7952-60.
28. Kweon S, An H, Shin C, Park MB, Min H. Nitrided Ni/N-zeolites as efficient catalysts for the dry reforming of methane. J CO2 Util 2021;46:101478.
29. Lyu J, Hu H, Rui J, et al. Nitridation: A simple way to improve the catalytic performance of hierarchical porous ZSM-5 in benzene alkylation with methanol. Chin Chem Lett 2017;28:482-6.
30. Wang T, Wu G, Guan N, Li L. Nitridation of MgO-loaded MCM-41 and its beneficial applications in base-catalyzed reactions. Microporous Mesoporous Mater 2012;148:184-90.
31. Liu Y, Xu L, Zhang W. Formaldehyde and isobutene condensation via Prins reaction on HY zeolites treated with NH3. Fine Chem 2020;37:2069-75. (in Chinese) Available from: https://link.cnki.net/doi/10.13550/j.jxhg.20200332. [Last accessed on 16 Apr 2024]
32. Boekaerts B, Sels BF. Catalytic advancements in carboxylic acid ketonization and its perspectives on biomass valorisation. Appl Catal B Environ 2021;283:119607.
33. Mekhemer GAH, Halawy SA, Mohamed MA, Zaki MI. Ketonization of acetic acid vapour over polycrystalline magnesia: in situ Fourier transform infrared spectroscopy and kinetic studies. J Catal 2005;230:109-22.
34. Xu L, Liu S, Meng X, et al. A novel tandem route to renewable isoprene over Mo-Fe oxide and mesoporous Cu/MgO composite catalysts. Appl Catal B Environ 2024;341:123341.
35. Xu L, Zhao R, Zhang W. One-step high-yield production of renewable propene from bioethanol over composite ZnCeOx oxide and HBeta zeolite with balanced Brönsted/Lewis acidity. Appl Catal B Environ 2020;279:119389.
36. Sagar GV, Rao PV, Srikanth CS, Chary KV. Dispersion and reactivity of copper catalysts supported on Al2O3-ZrO2. J Phys Chem B 2006;110:13881-8.
37. He LH, Li JJ, Han SY, et al. Dynamic evolution of HZSM-5 zeolite framework under steam treatment. Chem Synth 2024;4:1.
38. Zhao R, Xu L, Huang S, Zhang W. Highly selective production of renewable p-xylene from bio-based 2,5-dimethylfuran and ethylene over Al-modified H-Beta zeolites. Catal Sci Technol 2019;9:5676-85.
39. Dogan F, Hammond KD, Tompsett GA, et al. Searching for microporous, strongly basic catalysts: experimental and calculated 29Si NMR spectra of heavily nitrogen-doped Y zeolites. J Am Chem Soc 2009;131:11062-79.
40. Narasimharao K, Hartmann M, Thiel HH, Ernst S. Novel solid basic catalysts by nitridation of zeolite beta at low temperature. Microporous Mesoporous Mater 2006;90:377-83.
41. Kawano A, Moteki T, Ogura M. Effect of delamination on active base site formation over nitrided MWW-type zeolite for Knoevenagel condensation. Microporous Mesoporous Mater 2020;299:110104.
42. Shutilov RA, Zenkovets GA, Paukshtis EA, Gavrilov VY. Localization of the copper-containing component in the pore volume of zeolite ZSM-5. Kinet Catal 2014;55:243-51.
43. Khallouk K, Solhy A, Idrissi N, Flaud V, Kherbeche A, Barakat A. Microwave-assisted selective oxidation of sugars to carboxylic acids derivatives in water over zinc-vanadium mixed oxide. Chem Eng J 2020;385:123914.
44. Wu G, Guan N, Li L. Recent development of nitrogen-incorporated molecular sieves. Chin J Catal 2012;33:51-9. (in Chinese) Available from: https://guan.nankai.edu.cn/_upload/article/files/36/25/0754df344c98aa75e4d1d1632b97/da5cafcc-5073-4f51-82ad-74c148c43938.pdf. [Last accessed on 16 Apr 2024]