REFERENCES

1. Chang MB, Chang JS. Abatement of PFCs from semiconductor manufacturing processes by nonthermal plasma technologies:  a critical review. Ind Eng Chem Res 2006;45:4101-9.

2. Donnelly VM. Review article: reactions of fluorine atoms with silicon, revisited, again. J Vac Sci Technol A Vac Surf Films 2017;35:05C202.

3. Vorotyntsev AV, Petukhov AN, Trubyanov MM, et al. Progress and perspectives in high-purity substance production for semiconductor industry. Rev Chem Eng 2021;37:125-61.

4. Illuzzi F, Thewissen H. Perfluorocompounds emission reduction by the semiconductor industry. J Integr Environ Sci 2010;7:201-10.

5. World Semiconductor Trade Statistics. WSTS semiconductor market forecast fall 2023. Available from: https://www.wsts.org/76/103/WSTS-Semiconductor-Market-Forecast-Fall-2023. [Last accessed on 24 Jul 2024].

6. Tang Z. The synthesis technology of high purity tetrafluoromethane by fluorine and carbon. Cryo Spec Gases 2013;31:32-4. (in Chinese).

7. Pashkevich DS, Mukhortov DA, Petrov VB, Alekseev YI, Asovich VS, Barabanov VG. Synthesis of tetrafluoromethane by graphite fluorination with elemental fluorine. Russian J Appl Chem 2004;77:92-7.

8. Pashkevich DS, Shelopin GG, Mukhortov DA, Petrov VB, Alekseev YI, Asovich VS. Synthesis of perfluoroalkanes by high-temperature reaction of graphite with fluorine in a fluidized bed. Russ J Appl Chem 2004;77:1847-53.

9. Chen G, Ni Z. CN101298318A Method and apparatus for preparing high-purity carbon tetrafluoride gas. 2008. Available from: https://worldwide.espacenet.com/patent/search/family/040078304/publication/CN101298318A?q=CN101298318A. [Last accessed on 24 Jul 2024].

10. Bao H, Timothy A. US5779863A Perfluoro compound (PFC) separation and purification method and system. 1997. Available from: https://worldwide.espacenet.com/patent/search/family/025129273/publication/US5779863A?q=US5779863A. [Last accessed on 24 Jul 2024].

11. Asensio-Delgado S, Pardo F, Zarca G, Urtiaga A. Absorption separation of fluorinated refrigerant gases with ionic liquids: equilibrium, mass transport, and process design. Sep Purif Technol 2021;276:119363.

12. Vorotyntsev VM, Drozdov PN, Vorotyntsev IV, Anikin AE, Beljaev EM, Soboleva YA. The physico-chemical bases of separation and high purification of fluorocarbons and simple gases. Pet Chem 2011;51:492-5.

13. Battisti R, Machado RA, Marangoni C. A background review on falling film distillation in wetted-wall columns: from fundamentals towards intensified technologies. Chem Eng Process Process Intensif 2020;150:107873.

14. Ma H, Sun J, Li Z, Liu X. Research progress and optimization prospect of constant boiling distillation technology. E3S Web Conf 2021;290:03025.

15. Wang H, Shi Z, Yang J, et al. Docking of CuI and AgI in metal-organic frameworks for adsorption and separation of xenon. Angew Chem Int Ed Engl 2021;60:3417-21.

16. Wu D, Zhang P, Yang G, et al. Supramolecular control of MOF pore properties for the tailored guest adsorption/separation applications. Coord Chem Rev 2021;434:213709.

17. Mukherjee S, Sensharma D, Qazvini OT, et al. Advances in adsorptive separation of benzene and cyclohexane by metal-organic framework adsorbents. Coord Chem Rev 2021;437:213852.

18. Mohammed N, Lian H, Islam MS, et al. Selective adsorption and separation of organic dyes using functionalized cellulose nanocrystals. Chem Eng J 2021;417:129237.

19. Ding Y, Alimi LO, Moosa B, et al. Selective adsorptive separation of cyclohexane over benzene using thienothiophene cages. Chem Sci 2021;12:5315-8.

20. Lv D, Zhou P, Xu J, et al. Recent advances in adsorptive separation of ethane and ethylene by C2H6-selective MOFs and other adsorbents. Chem Eng J 2022;431:133208.

21. Gong W, Xie Y, Pham TD, et al. Creating optimal pockets in a clathrochelate-based metal-organic framework for gas adsorption and separation: experimental and computational studies. J Am Chem Soc 2022;144:3737-45.

22. Brandt P, Nuhnen A, Öztürk S, Kurt G, Liang J, Janiak C. Comparative evaluation of different MOF and non-MOF porous materials for SO2 adsorption and separation showing the importance of small pore diameters for low-pressure uptake. Adv Sustain Syst 2021;5:2000285.

23. Rehman A, Nazir G, Yop Rhee K, Park S. A rational design of cellulose-based heteroatom-doped porous carbons: promising contenders for CO2 adsorption and separation. Chem Eng J 2021;420:130421.

24. Xie W, Yang L, Zhang J, Zhao X. The adsorptive separation of ethylene from C2 hydrocarbons by metal-organic frameworks. Chemistry 2023;29:e202300158.

25. Guo Y, Su C, Chen H, et al. Hierarchical porous carbon with tunable apertures and nitrogen/oxygen heteroatoms for efficient adsorption and separation of VOCs. Chem Eng J 2023;471:144558.

26. Ryu U, Jee S, Rao PC, et al. Recent advances in process engineering and upcoming applications of metal-organic frameworks. Coord Chem Rev 2021;426:213544.

27. Lee JM, Cooper AI. Advances in conjugated microporous polymers. Chem Rev 2020;120:2171-214.

28. Ma Y, Cui F, Rong H, et al. Continuous porous aromatic framework membranes with modifiable sites for optimized gas separation. Angew Chem Int Ed Engl 2022;61:e202113682.

29. Yuan Y, Zhu G. Porous aromatic frameworks as a platform for multifunctional applications. ACS Cent Sci 2019;5:409-18.

30. Das S, Heasman P, Ben T, Qiu S. Porous organic materials: strategic design and structure-function correlation. Chem Rev 2017;117:1515-63.

31. Bai R, Song X, Yan W, Yu J. Low-energy adsorptive separation by zeolites. Natl Sci Rev 2022;9:nwac064.

32. Peng X, Vicent-Luna JM, Jin Q. Separation of CF4/N2, C2F6/N2, and SF6/N2 mixtures in amorphous activated carbons using molecular simulations. ACS Appl Mater Interfaces 2020;12:20044-55.

33. Sosa JE, Malheiro C, Ribeiro RP, et al. Adsorption of fluorinated greenhouse gases on activated carbons: evaluation of their potential for gas separation. J Chem Tech Biotech 2020;95:1892-905.

34. Choi SW, Yoon HJ, Lee HJ, Lee E, Lim D, Lee KB. CF4 adsorption on porous carbon derived from silicon carbide. Microporous Mesoporous Mater 2020;306:110373.

35. Zhu J, Hu J, Xiao H, et al. Aluminum-based metal organic frameworks for greenhouse gases CF4 and C2F6 capture with excellent capacity and selectivity. Sep Purif Technol 2024;331:125614.

36. Chuah CY, Goh K, Bae TH. Hierarchically structured HKUST-1 nanocrystals for enhanced SF6 capture and recovery. J Phys Chem C 2017;121:6748-55.

37. Kim MB, Lee SJ, Lee CY, Bae YS. High SF6 selectivities and capacities in isostructural metal-organic frameworks with proper pore sizes and highly dense unsaturated metal sites. Microporous Mesoporous Mater 2014;190:356-61.

38. Senkovska I, Barea E, Navarro JAR, Kaskel S. Adsorptive capturing and storing greenhouse gases such as sulfur hexafluoride and carbon tetrafluoride using metal-organic frameworks. Microporous Mesoporous Mater 2012;156:115-20.

39. Kim M, Kim K, Kim T, et al. Highly selective adsorption of SF6 over N2 in a bromine-functionalized zirconium-based metal-organic framework. Chem Eng J 2018;339:223-9.

40. Guo Y, Tan C, Sun J, Li W, Zhang J, Zhao C. Porous activated carbons derived from waste sugarcane bagasse for CO2 adsorption. Chem Eng J 2020;381:122736.

41. Jiang N, Shang R, Heijman SGJ, Rietveld LC. High-silica zeolites for adsorption of organic micro-pollutants in water treatment: a review. Water Res 2018;144:145-61.

42. Xu X, Megarajan SK, Zhang Y, Jiang H. Ordered mesoporous alumina and their composites based on evaporation induced self-assembly for adsorption and catalysis. Chem Mater 2020;32:3-26.

43. Wu J, Xu F, Li S, et al. Porous polymers as multifunctional material platforms toward task-specific applications. Adv Mater 2019;31:e1802922.

44. Chaoui N, Trunk M, Dawson R, Schmidt J, Thomas A. Trends and challenges for microporous polymers. Chem Soc Rev 2017;46:3302-21.

45. Farha OK, Yazaydın AÖ, Eryazici I, et al. De novo synthesis of a metal-organic framework material featuring ultrahigh surface area and gas storage capacities. Nat Chem 2010;2:944-8.

46. Comotti A, Castiglioni F, Bracco S, et al. Fluorinated porous organic frameworks for improved CO2 and CH4 capture. Chem Commun 2019;55:8999-9002.

47. Wu AX, Drayton JA, Mizrahi Rodriguez K, et al. Elucidating the role of fluorine content on gas sorption properties of fluorinated polyimides. Macromolecules 2021;54:22-34.

48. Feng L, Guo J, Zhong X, Sun Z. Fluorinated porous poly(spirobifluorene) via direct C-H arylation: characterization, porosity, and gas uptake. J Macromol Sci Part A 2014;51:604-9.

49. Boopalachandran P, Laane J. Vibrational spectra, structure, and theoretical calculations of 2-fluoro- and 3-fluoropyridine. Spectrochim Acta A Mol Biomol Spectrosc 2011;79:1191-5.

50. Al-Ghouti MA, Da’ana DA. Guidelines for the use and interpretation of adsorption isotherm models: a review. J Hazard Mater 2020;393:122383.

51. Bai X, Wang X, Lu X, et al. A fluorine induced enhancement of the surface polarization and crystallization of g-C3N4 for an efficient charge separation. New J Chem 2021;45:9334-45.

52. Werner P, Wächter T, Asyuda A, et al. Electron transfer dynamics and structural effects in benzonitrile monolayers with tuned dipole moments by differently positioned fluorine atoms. ACS Appl Mater Interfaces 2020;12:39859-69.

Chemical Synthesis
ISSN 2769-5247 (Online)

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/