REFERENCES
1. Chang MB, Chang JS. Abatement of PFCs from semiconductor manufacturing processes by nonthermal plasma technologies: a critical review. Ind Eng Chem Res 2006;45:4101-9.
2. Donnelly VM. Review article: reactions of fluorine atoms with silicon, revisited, again. J Vac Sci Technol A Vac Surf Films 2017;35:05C202.
3. Vorotyntsev AV, Petukhov AN, Trubyanov MM, et al. Progress and perspectives in high-purity substance production for semiconductor industry. Rev Chem Eng 2021;37:125-61.
4. Illuzzi F, Thewissen H. Perfluorocompounds emission reduction by the semiconductor industry. J Integr Environ Sci 2010;7:201-10.
5. World Semiconductor Trade Statistics. WSTS semiconductor market forecast fall 2023. Available from: https://www.wsts.org/76/103/WSTS-Semiconductor-Market-Forecast-Fall-2023. [Last accessed on 24 Jul 2024].
6. Tang Z. The synthesis technology of high purity tetrafluoromethane by fluorine and carbon. Cryo Spec Gases 2013;31:32-4. (in Chinese).
7. Pashkevich DS, Mukhortov DA, Petrov VB, Alekseev YI, Asovich VS, Barabanov VG. Synthesis of tetrafluoromethane by graphite fluorination with elemental fluorine. Russian J Appl Chem 2004;77:92-7.
8. Pashkevich DS, Shelopin GG, Mukhortov DA, Petrov VB, Alekseev YI, Asovich VS. Synthesis of perfluoroalkanes by high-temperature reaction of graphite with fluorine in a fluidized bed. Russ J Appl Chem 2004;77:1847-53.
9. Chen G, Ni Z. CN101298318A Method and apparatus for preparing high-purity carbon tetrafluoride gas. 2008. Available from: https://worldwide.espacenet.com/patent/search/family/040078304/publication/CN101298318A?q=CN101298318A. [Last accessed on 24 Jul 2024].
10. Bao H, Timothy A. US5779863A Perfluoro compound (PFC) separation and purification method and system. 1997. Available from: https://worldwide.espacenet.com/patent/search/family/025129273/publication/US5779863A?q=US5779863A. [Last accessed on 24 Jul 2024].
11. Asensio-Delgado S, Pardo F, Zarca G, Urtiaga A. Absorption separation of fluorinated refrigerant gases with ionic liquids: equilibrium, mass transport, and process design. Sep Purif Technol 2021;276:119363.
12. Vorotyntsev VM, Drozdov PN, Vorotyntsev IV, Anikin AE, Beljaev EM, Soboleva YA. The physico-chemical bases of separation and high purification of fluorocarbons and simple gases. Pet Chem 2011;51:492-5.
13. Battisti R, Machado RA, Marangoni C. A background review on falling film distillation in wetted-wall columns: from fundamentals towards intensified technologies. Chem Eng Process Process Intensif 2020;150:107873.
14. Ma H, Sun J, Li Z, Liu X. Research progress and optimization prospect of constant boiling distillation technology. E3S Web Conf 2021;290:03025.
15. Wang H, Shi Z, Yang J, et al. Docking of CuI and AgI in metal-organic frameworks for adsorption and separation of xenon. Angew Chem Int Ed Engl 2021;60:3417-21.
16. Wu D, Zhang P, Yang G, et al. Supramolecular control of MOF pore properties for the tailored guest adsorption/separation applications. Coord Chem Rev 2021;434:213709.
17. Mukherjee S, Sensharma D, Qazvini OT, et al. Advances in adsorptive separation of benzene and cyclohexane by metal-organic framework adsorbents. Coord Chem Rev 2021;437:213852.
18. Mohammed N, Lian H, Islam MS, et al. Selective adsorption and separation of organic dyes using functionalized cellulose nanocrystals. Chem Eng J 2021;417:129237.
19. Ding Y, Alimi LO, Moosa B, et al. Selective adsorptive separation of cyclohexane over benzene using thienothiophene cages. Chem Sci 2021;12:5315-8.
20. Lv D, Zhou P, Xu J, et al. Recent advances in adsorptive separation of ethane and ethylene by C2H6-selective MOFs and other adsorbents. Chem Eng J 2022;431:133208.
21. Gong W, Xie Y, Pham TD, et al. Creating optimal pockets in a clathrochelate-based metal-organic framework for gas adsorption and separation: experimental and computational studies. J Am Chem Soc 2022;144:3737-45.
22. Brandt P, Nuhnen A, Öztürk S, Kurt G, Liang J, Janiak C. Comparative evaluation of different MOF and non-MOF porous materials for SO2 adsorption and separation showing the importance of small pore diameters for low-pressure uptake. Adv Sustain Syst 2021;5:2000285.
23. Rehman A, Nazir G, Yop Rhee K, Park S. A rational design of cellulose-based heteroatom-doped porous carbons: promising contenders for CO2 adsorption and separation. Chem Eng J 2021;420:130421.
24. Xie W, Yang L, Zhang J, Zhao X. The adsorptive separation of ethylene from C2 hydrocarbons by metal-organic frameworks. Chemistry 2023;29:e202300158.
25. Guo Y, Su C, Chen H, et al. Hierarchical porous carbon with tunable apertures and nitrogen/oxygen heteroatoms for efficient adsorption and separation of VOCs. Chem Eng J 2023;471:144558.
26. Ryu U, Jee S, Rao PC, et al. Recent advances in process engineering and upcoming applications of metal-organic frameworks. Coord Chem Rev 2021;426:213544.
28. Ma Y, Cui F, Rong H, et al. Continuous porous aromatic framework membranes with modifiable sites for optimized gas separation. Angew Chem Int Ed Engl 2022;61:e202113682.
29. Yuan Y, Zhu G. Porous aromatic frameworks as a platform for multifunctional applications. ACS Cent Sci 2019;5:409-18.
30. Das S, Heasman P, Ben T, Qiu S. Porous organic materials: strategic design and structure-function correlation. Chem Rev 2017;117:1515-63.
31. Bai R, Song X, Yan W, Yu J. Low-energy adsorptive separation by zeolites. Natl Sci Rev 2022;9:nwac064.
32. Peng X, Vicent-Luna JM, Jin Q. Separation of CF4/N2, C2F6/N2, and SF6/N2 mixtures in amorphous activated carbons using molecular simulations. ACS Appl Mater Interfaces 2020;12:20044-55.
33. Sosa JE, Malheiro C, Ribeiro RP, et al. Adsorption of fluorinated greenhouse gases on activated carbons: evaluation of their potential for gas separation. J Chem Tech Biotech 2020;95:1892-905.
34. Choi SW, Yoon HJ, Lee HJ, Lee E, Lim D, Lee KB. CF4 adsorption on porous carbon derived from silicon carbide. Microporous Mesoporous Mater 2020;306:110373.
35. Zhu J, Hu J, Xiao H, et al. Aluminum-based metal organic frameworks for greenhouse gases CF4 and C2F6 capture with excellent capacity and selectivity. Sep Purif Technol 2024;331:125614.
36. Chuah CY, Goh K, Bae TH. Hierarchically structured HKUST-1 nanocrystals for enhanced SF6 capture and recovery. J Phys Chem C 2017;121:6748-55.
37. Kim MB, Lee SJ, Lee CY, Bae YS. High SF6 selectivities and capacities in isostructural metal-organic frameworks with proper pore sizes and highly dense unsaturated metal sites. Microporous Mesoporous Mater 2014;190:356-61.
38. Senkovska I, Barea E, Navarro JAR, Kaskel S. Adsorptive capturing and storing greenhouse gases such as sulfur hexafluoride and carbon tetrafluoride using metal-organic frameworks. Microporous Mesoporous Mater 2012;156:115-20.
39. Kim M, Kim K, Kim T, et al. Highly selective adsorption of SF6 over N2 in a bromine-functionalized zirconium-based metal-organic framework. Chem Eng J 2018;339:223-9.
40. Guo Y, Tan C, Sun J, Li W, Zhang J, Zhao C. Porous activated carbons derived from waste sugarcane bagasse for CO2 adsorption. Chem Eng J 2020;381:122736.
41. Jiang N, Shang R, Heijman SGJ, Rietveld LC. High-silica zeolites for adsorption of organic micro-pollutants in water treatment: a review. Water Res 2018;144:145-61.
42. Xu X, Megarajan SK, Zhang Y, Jiang H. Ordered mesoporous alumina and their composites based on evaporation induced self-assembly for adsorption and catalysis. Chem Mater 2020;32:3-26.
43. Wu J, Xu F, Li S, et al. Porous polymers as multifunctional material platforms toward task-specific applications. Adv Mater 2019;31:e1802922.
44. Chaoui N, Trunk M, Dawson R, Schmidt J, Thomas A. Trends and challenges for microporous polymers. Chem Soc Rev 2017;46:3302-21.
45. Farha OK, Yazaydın AÖ, Eryazici I, et al. De novo synthesis of a metal-organic framework material featuring ultrahigh surface area and gas storage capacities. Nat Chem 2010;2:944-8.
46. Comotti A, Castiglioni F, Bracco S, et al. Fluorinated porous organic frameworks for improved CO2 and CH4 capture. Chem Commun 2019;55:8999-9002.
47. Wu AX, Drayton JA, Mizrahi Rodriguez K, et al. Elucidating the role of fluorine content on gas sorption properties of fluorinated polyimides. Macromolecules 2021;54:22-34.
48. Feng L, Guo J, Zhong X, Sun Z. Fluorinated porous poly(spirobifluorene) via direct C-H arylation: characterization, porosity, and gas uptake. J Macromol Sci Part A 2014;51:604-9.
49. Boopalachandran P, Laane J. Vibrational spectra, structure, and theoretical calculations of 2-fluoro- and 3-fluoropyridine. Spectrochim Acta A Mol Biomol Spectrosc 2011;79:1191-5.
50. Al-Ghouti MA, Da’ana DA. Guidelines for the use and interpretation of adsorption isotherm models: a review. J Hazard Mater 2020;393:122383.
51. Bai X, Wang X, Lu X, et al. A fluorine induced enhancement of the surface polarization and crystallization of g-C3N4 for an efficient charge separation. New J Chem 2021;45:9334-45.