REFERENCES
1. Yu H, Wan J, Goodsite M, Jin H. Advancing direct seawater electrocatalysis for green and affordable hydrogen. One Earth 2023;6:267-77.
2. Liu W, Niu X, Tang J, et al. Energy-efficient anodic reactions for sustainable hydrogen production via water electrolysis. Chem Synth 2023;3:44.
3. Wang J, Xu F, Jin H, Chen Y, Wang Y. Non-noble metal-based carbon composites in hydrogen evolution reaction: fundamentals to applications. Adv Mater 2017;29:1605838.
4. Pang J, Sun J, Zheng M, Li H, Wang Y, Zhang T. Transition metal carbide catalysts for biomass conversion: a review. Appl Catal B Environ 2019;254:510-22.
5. VahidMohammadi A, Rosen J, Gogotsi Y. The world of two-dimensional carbides and nitrides (MXenes). Science 2021;372:eabf1581.
6. Jin H, Song T, Paik U, Qiao S. Metastable two-dimensional materials for electrocatalytic energy conversions. Acc Mater Res 2021;2:559-73.
7. Peng X, Chen L, Liu Y, et al. Strain engineering of two-dimensional materials for energy storage and conversion applications. Chem Synth 2023;3:47.
8. Jin H, Gu Q, Chen B, et al. Molten salt-directed catalytic synthesis of 2d layered transition-metal nitrides for efficient hydrogen evolution. Chem 2020;6:2382-94.
9. Lu C, Tranca D, Zhang J, et al. Molybdenum carbide-embedded nitrogen-doped porous carbon nanosheets as electrocatalysts for water splitting in alkaline media. ACS Nano 2017;11:3933-42.
10. Peng F, Zhang L, Jiang B, et al. In-situ synthesis of microflower composed of N-doped carbon films and Mo2C coupled with Ni or FeNi alloy for water splitting. Chem Eng J 2022;427:131712.
11. Ma G, Ning G, Wei Q. S-doped carbon materials: synthesis, properties and applications. Carbon 2022;195:328-40.
12. Ma X, Ning G, Wang Y, et al. S-doped mesoporous graphene microspheres: a high performance reservoir material for Li S batteries. Electrochim Acta 2018;269:83-92.
13. Niu J, Dai P, Qi G, et al. Preparation of P doped TiO2 nanotubes and its photocatalytic activity. Integr Ferroelectr 2016;176:150-9.
14. Li C, Jang H, Liu S, et al. P and Mo dual doped Ru ultrasmall nanoclusters embedded in P-doped porous carbon toward efficient hydrogen evolution reaction. Adv Energy Mater 2022;12:2200029.
15. Wan J, Zhang G, Jin H, et al. Microwave-assisted synthesis of well-defined nitrogen doping configuration with high centrality in carbon to identify the active sites for electrochemical hydrogen peroxide production. Carbon 2022;191:340-9.
16. Lu F, Zhou Y, Liu J, Pan Y. Enhancement of F-doping on the electrochemical behavior of carbon-coated LiFePO4 nanoparticles prepared by hydrothermal route. Electrochim Acta 2011;56:8833-8.
17. Joucken F, Tison Y, Le Fèvre P, et al. Charge transfer and electronic doping in nitrogen-doped graphene. Sci Rep 2015;5:14564.
18. Wang Y, Niu Y, Pu Y, Li S, Liu Y, Zhang B. Revealing the dynamic formation mechanism of porous Mo2C: an in-situ TEM study. Chem Synth 2023;3:42.
19. Jia Y, Zhang L, Zhuang L, et al. Identification of active sites for acidic oxygen reduction on carbon catalysts with and without nitrogen doping. Nat Catal 2019;2:688-95.
20. de la Torre B, Švec M, Hapala P, et al. Non-covalent control of spin-state in metal-organic complex by positioning on N-doped graphene. Nat Commun 2018;9:2831.
21. Hasegawa G, Deguchi T, Kanamori K, et al. High-level doping of nitrogen, phosphorus, and sulfur into activated carbon monoliths and their electrochemical capacitances. Chem Mater 2015;27:4703-12.
22. Liang HW, Zhuang X, Brüller S, Feng X, Müllen K. Hierarchically porous carbons with optimized nitrogen doping as highly active electrocatalysts for oxygen reduction. Nat Commun 2014;5:4973.
23. Lv Q, Si W, He J, et al. Selectively nitrogen-doped carbon materials as superior metal-free catalysts for oxygen reduction. Nat Commun 2018;9:3376.
24. Zheng YR, Wu P, Gao MR, et al. Doping-induced structural phase transition in cobalt diselenide enables enhanced hydrogen evolution catalysis. Nat Commun 2018;9:2533.
25. Jin S, Guo Y, Wang J, Wang L, Hu Q, Zhou A. Carbon dioxide adsorption of two-dimensional Mo2C MXene. Diam Relat Mater 2022;128:109277.
26. Tao Q, Dahlqvist M, Lu J, et al. Two-dimensional Mo1.33C MXene with divacancy ordering prepared from parent 3D laminate with in-plane chemical ordering. Nat Commun 2017;8:14949.
27. Khazaei M, Arai M, Sasaki T, Estili M, Sakka Y. The effect of the interlayer element on the exfoliation of layered Mo2AC (A = Al, Si, P, Ga, Ge, As or In) MAX phases into two-dimensional Mo2C nanosheets. Sci Technol Adv Mater 2014;15:014208.
28. Buke GC, Caylan OR, Ogurtani OT. Growth mechanism of 2D Mo2C on Cu via CVD. Cryst Growth Des 2023;23:5462-8.
29. Geng D, Zhao X, Chen Z, et al. Direct synthesis of large-area 2D Mo2C on in situ grown graphene. Adv Mater 2017;29:1700072.
30. Xu C, Wang L, Liu Z, et al. Large-area high-quality 2D ultrathin Mo2C superconducting crystals. Nat Mater 2015;14:1135-41.
31. Xie H, Feng Y, He X, et al. Construction of nitrogen-doped biphasic transition-metal sulfide nanosheet electrode for energy-efficient hydrogen production via urea electrolysis. Small 2023;19:e2207425.
32. Sun A, Shen Y, Wu Z, Wang D. N-doped MoP nanoparticles for improved hydrogen evolution. Int J Hydrogen Energy 2017;42:14566-71.
33. Jiang H, Xian J, Hu R, et al. Microwave discharge for rapid introduction of bimetallic-synergistic configuration to conductive catecholate toward long-term supercapacitor. Chem Eng J 2023;455:140804.
34. Jiang H, Li J, Xiao Z, et al. The rapid production of multiple transition metal carbides via microwave combustion under ambient conditions. Nanoscale 2020;12:16245-52.
35. Wan J, Huang L, Wu J, et al. Microwave combustion for rapidly synthesizing pore-size-controllable porous graphene. Adv Funct Mater 2018;28:1800382.
36. Xie H, Liu N, Zhang Q, et al. A stable atmospheric-pressure plasma for extreme-temperature synthesis. Nature 2023;623:964-71.
37. Hu R, Jiang H, Xian J, et al. Microwave-pulse sugar-blowing assisted synthesis of 2D transition metal carbides for sustainable hydrogen evolution. Appl Catal B Environ 2022;317:121728.
38. Xian J, Jiang H, Wu Z, et al. Microwave shock motivating the Sr substitution of 2D porous GdFeO3 perovskite for highly active oxygen evolution. J Energy Chem 2024;88:232-41.
39. Fang G, Liu K, Fan M, et al. Unveiling the electron configuration-dependent oxygen evolution activity of 2D porous Sr-substituted LaFeO3 perovskite through microwave shock. Carbon Neutralization 2023;2:709-20.
40. Hu R, Wei L, Xian J, et al. Microwave shock process for rapid synthesis of 2D porous La0.2Sr0.8CoO3 perovskite as an efficient oxygen evolution reaction catalyst. Acta Phys Chim Sin 2023;39:2212025.
41. Han K, Liu Z, Li P, et al. High-throughput fabrication of 3D N-doped graphenic framework coupled with Fe3C@porous graphite carbon for ultrastable potassium ion storage. Energy Storage Mater 2019;22:185-93.
42. Luo Y, Liu K, Jin H, Wang Z, Dai S, Huang L. Blowing ultrathin 2D materials. Adv Mater Inter 2023;10:2202239.
43. Wang X, Zhang Y, Zhi C, et al. Three-dimensional strutted graphene grown by substrate-free sugar blowing for high-power-density supercapacitors. Nat Commun 2013;4:2905.
44. Zhou E, Wang C, Shao M, Deng X, Xu X. MoO2 nanoparticles grown on carbon fibers as anode materials for lithium-ion batteries. Ceram Int 2017;43:760-5.
45. Sun J, Chen X, Mao Z, Liu B, Zhao R, Du J. Fabrication of Mo2C nanoparticles on N-doped carbon nanosheets as high-performance electrocatalyst. J Alloys Compd 2023;934:167931.
46. Wang D, Liu T, Wang J, Wu Z. N, P (S) Co-doped Mo2C/C hybrid electrocatalysts for improved hydrogen generation. Carbon 2018;139:845-52.
47. Yu B, Yang D, Hu Y, He J, Chen Y, He W. Mo2C nanodots anchored on N-doped porous CNT microspheres as electrode for efficient Li-ion storage. Small Methods 2019;3:1800287.
48. Fan J, Wu X, Piñeiro-García A, et al. β-Mo2C nanoparticles produced by carburization of molybdenum oxides with carbon black under microwave irradiation for electrocatalytic hydrogen evolution reaction. ACS Appl Nano Mater 2021;4:12270-7.
49. Zuo P, Liu Y, Liu X, Jiao W, Wang R. N, P-codoped molybdenum carbide nanoparticles loaded into N, P-codoped graphene for the enhanced electrocatalytic hydrogen evolution. Int J Hydrogen Energy 2022;47:29730-40.
50. Geng W, Han H, Liu F, Liu X, Xiao L, Wu W. N,P,S-codoped C@nano-Mo2C as an efficient catalyst for high selective synthesis of methanol from CO2 hydrogenation. J CO2 Util 2017;21:64-71.
51. Wang Q, Yu R, Shen D, et al. One-pot synthesis of Mo2C&MoS2 loaded on N/S co-doped carbon materials as the electrocatalyts for hydrogen evolution reaction. Fuel 2022;318:123615.
52. Wan J, Wu J, Gao X, et al. Structure confined porous Mo2C for efficient hydrogen evolution. Adv Funct Mater 2017;27:1703933.
53. Zhao S, Lu X, Wang L, Gale J, Amal R. Carbon-based metal-free catalysts for electrocatalytic reduction of nitrogen for synthesis of ammonia at ambient conditions. Adv Mater 2019;31:1805367.
54. Jiao Y, Zheng Y, Davey K, Qiao S. Activity origin and catalyst design principles for electrocatalytic hydrogen evolution on heteroatom-doped graphene. Nat Energy 2016;1:16130.
55. Zhang Y, Yun S, Dang J, et al. Defect engineering via ternary nonmetal doping boosts the catalytic activity of ZIF-derived carbon-based metal-free catalysts for photovoltaics and water splitting. Mater Today Phys 2022;27:100785.
56. Chang Y, Tseng C, Lee C, et al. N- and S-codoped graphene hollow nanoballs as an efficient Pt-free electrocatalyst for dye-sensitized solar cells. J Power Sources 2020;449:227470.
57. Pei Z, Li H, Huang Y, et al. Texturing in situ: N,S-enriched hierarchically porous carbon as a highly active reversible oxygen electrocatalyst. Energy Environ Sci 2017;10:742-9.
58. Wang X, Xia L, Guo C, et al. Interfacial engineering of N, S-doped Mo2C-Mo/C heterogeneous nanorods for enhanced alkaline hydrogen evolution. Appl Surf Sci 2023;614:156276.
59. Cai J, Song Y, Zang Y, et al. N-induced lattice contraction generally boosts the hydrogen evolution catalysis of P-rich metal phosphides. Sci Adv 2020;6:eaaw8113.
60. Xu J, Ge L, Zhou Y, et al. Insights into N, P, S multi-doped Mo2C/C composites as highly efficient hydrogen evolution reaction catalysts. Nanoscale Adv 2020;2:3334-40.
61. Ji L, Wang J, Teng X, Dong H, He X, Chen Z. N,P-doped molybdenum carbide nanofibers for efficient hydrogen production. ACS Appl Mater Interfaces 2018;10:14632-40.
62. Shi Z, Nie K, Shao Z, et al. Phosphorus-Mo2C@carbon nanowires toward efficient electrochemical hydrogen evolution: composition, structural and electronic regulation. Energy Environ Sci 2017;10:1262-71.