REFERENCES

1. Varghese AM, Karanikolos GN. CO2 capture adsorbents functionalized by amine - bearing polymers: a review. Int J Greenh Gas Con 2020;96:103005.

2. Singh G, Lee J, Karakoti A, et al. Emerging trends in porous materials for CO2 capture and conversion. Chem Soc Rev 2020;49:4360-404.

3. Siegelman RL, Kim EJ, Long JR. Porous materials for carbon dioxide separations. Nat Mater 2021;20:1060-72.

4. Osman AI, Hefny M, Abdel Maksoud MIA, Elgarahy AM, Rooney DW. Recent advances in carbon capture storage and utilisation technologies: a review. Environ Chem Lett 2021;19:797-849.

5. Liu X, Wang M, Zhou C, et al. Selective transformation of carbon dioxide into lower olefins with a bifunctional catalyst composed of ZnGa2O4 and SAPO-34. Chem Commun 2018;54:140-3.

6. Lashaki M, Khiavi S, Sayari A. Stability of amine-functionalized CO2 adsorbents: a multifaceted puzzle. Chem Soc Rev 2019;48:3320-405.

7. Kolle JM, Fayaz M, Sayari A. Understanding the effect of water on CO2 adsorption. Chem Rev 2021;121:7280-345.

8. Hu Z, Wang Y, Shah BB, Zhao D. CO2 capture in metal–organic framework adsorbents: an engineering perspective. Adv Sustain Syst 2019;3:1800080.

9. Song C, Liu Q, Deng S, Li H, Kitamura Y. Cryogenic-based CO2 capture technologies: state-of-the-art developments and current challenges. Renew Sustain Energy Rev 2019;101:265-78.

10. Shehzad N, Tahir M, Johari K, Murugesan T, Hussain M. A critical review on TiO2 based photocatalytic CO2 reduction system: strategies to improve efficiency. J CO2 Util 2018;26:98-122.

11. Nikoloudakis E, López-Duarte I, Charalambidis G, Ladomenou K, Ince M, Coutsolelos AG. Porphyrins and phthalocyanines as biomimetic tools for photocatalytic H2 production and CO2 reduction. Chem Soc Rev 2022;51:6965-7045.

12. Muhammed NS, Haq B, Al Shehri D, Al-ahmed A, Rahman MM, Zaman E. A review on underground hydrogen storage: insight into geological sites, influencing factors and future outlook. Energy Rep 2022;8:461-99.

13. Fan WK, Tahir M. Recent advances on cobalt metal organic frameworks (MOFs) for photocatalytic CO2 reduction to renewable energy and fuels: a review on current progress and future directions. Energ Convers Manage 2022;253:115180.

14. Du Z, Liu C, Zhai J, et al. A review of hydrogen purification technologies for fuel cell vehicles. Catalysts 2021;11:393.

15. Dissanayake PD, You S, Igalavithana AD, et al. Biochar-based adsorbents for carbon dioxide capture: a critical review. Renew Sustain Energy Rev 2020;119:109582.

16. Chakraborty R, K V, Pradhan M, Nayak AK. Recent advancement of biomass-derived porous carbon based materials for energy and environmental remediation applications. J Mater Chem A 2022;10:6965-7005.

17. Chai Y, Gao N, Wang M, Wu C. H2 production from co-pyrolysis/gasification of waste plastics and biomass under novel catalyst Ni-CaO-C. Chem Eng J 2020;382:122947.

18. Tawalbeh M, Muhammad Nauman Javed R, Al-othman A, Almomani F. The novel contribution of non-noble metal catalysts for intensified carbon dioxide hydrogenation: recent challenges and opportunities. Energ Convers Manage 2023;279:116755.

19. Pal S, Krishna R, Das MC. Highly scalable acid-base resistant Cu-Prussian blue metal-organic framework for C2H2/C2H4, biogas, and flue gas separations. Chem Eng J 2023;460:141795.

20. Jiang L, Liu W, Wang R, et al. Sorption direct air capture with CO2 utilization. Prog Energ Combust 2023;95:101069.

21. Hu Y, Jiang Y, Li J, et al. New-generation anion-pillared metal–organic frameworks with customized cages for highly efficient CO2 capture. Adv Funct Mater 2023;33:2213915.

22. Ding H, Zhang Y, Dong Y, Wen C, Yang Y. High-pressure supersonic carbon dioxide (CO2) separation benefiting carbon capture, utilisation and storage (CCUS) technology. Appl Energy 2023;339:120975.

23. Zhou H, Yi X, Hui Y, et al. Isolated boron in zeolite for oxidative dehydrogenation of propane. Science 2021;372:76-80.

24. Xiong H, Liu Z, Chen X, et al. In situ imaging of the sorption-induced subcell topological flexibility of a rigid zeolite framework. Science 2022;376:491-6.

25. Tai W, Dai W, Wu G, Li L. A simple strategy for synthesis of b-axis-oriented MFI zeolite macro-nanosheets. Chem Synth 2023;3:38.

26. Yuan K, Jia X, Wang S, et al. Effect of crystal size of ZSM-11 zeolite on the catalytic performance and reaction route in methanol to olefins. Chem Synth 2023;4:31.

27. Sun Y, Lang Q, Fu G, et al. Highly hydrophobic zeolite ZSM-8 with perfect framework structure obtained in a strongly acidic medium. Micropor Mesopor Mat 2024;363:112839.

28. Jalali A, Ahmadpour A, Ghahramaninezhad M, Yasari E. Hierarchical nanocomposites derived from UiO-66 framework and zeolite for enhanced CO2 adsorption. J Environ Chem Eng 2023;11:111294.

29. Najafi AM, Khorasheh F, Soltanali S, Ghassabzadeh H. Equilibrium and kinetic insights into the comprehensive investigation of CO2, CH4, and N2 adsorption on cation-exchanged X and Y faujasite zeolites. Langmuir 2023;39:15535-46.

30. Kencana KS, Choi HJ, Kemp KC, Hong SB. Enhancing the CO2 adsorption kinetics on Na-RHO and Cs-MER zeolites by NH4F/H2O2 etching induced mesoporosity. Chem Eng J 2023;451:138520.

31. Jiang Y, Zhou W, He N, Yan S, Chen S, Liu J. Preparation of shaped binder-free SSZ-13 zeolite and its application in CO2 adsorption and catalysis. ChemCatChem 2022;14:e202200795.

32. Fu D, Park Y, Davis ME. Confinement effects facilitate low-concentration carbon dioxide capture with zeolites. Proc Natl Acad Sci U S A 2022;119:e2211544119.

33. Zhou Y, Zhang J, Wang L, et al. Self-assembled iron-containing mordenite monolith for carbon dioxide sieving. Science 2021;373:315-20.

34. Wu Q, Meng X, Gao X, Xiao FS. Solvent-free synthesis of zeolites: mechanism and utility. Acc Chem Res 2018;51:1396-403.

35. Wu Q, Ma Y, Wang S, Meng X, Xiao F. 110th Anniversary: sustainable synthesis of zeolites: from fundamental research to industrial production. Ind Eng Chem Res 2019;58:11653-8.

36. Ma Y, Han S, Wu Q, et al. One-pot fabrication of metal-zeolite catalysts from a combination of solvent-free and sodium-free routes. Catal Today 2021;371:64-8.

37. Liu P, Wu Q, Yan K, Wang L, Xiao FS. Solvent-free synthesis of FAU zeolite from coal fly ash. Dalton Trans 2022;52:24-8.

38. Kan X, Xiao S, Zheng Y, et al. Sustainable synthesis of ordered mesoporous materials without additional solvents. J Colloid Interface Sci 2022;619:116-22.

39. Ren L, Wu Q, Yang C, et al. Solvent-free synthesis of zeolites from solid raw materials. J Am Chem Soc 2012;134:15173-6.

40. Qian B, Zhang J, Zhou S, et al. Synthesis of (111) facet-engineered MgO nanosheet from coal fly ash and its superior catalytic performance for high-temperature water gas shift reaction. Appl Catal A Gen 2021;618:118132.

41. Park S, Kim M, Lim Y, et al. Characterization of rare earth elements present in coal ash by sequential extraction. J Hazard Mater 2021;402:123760.

42. Guan Q, Hu X, Wu D, Shang X, Ye C, Kong H. Phosphate removal in marine electrolytes by zeolite synthesized from coal fly ash. Fuel 2009;88:1643-9.

43. Yamaura M, Fungaro DA. Synthesis and characterization of magnetic adsorbent prepared by magnetite nanoparticles and zeolite from coal fly ash. J Mater Sci 2013;48:5093-101.

44. Tauanov Z, Tsakiridis PE, Mikhalovsky SV, Inglezakis VJ. Synthetic coal fly ash-derived zeolites doped with silver nanoparticles for mercury (II) removal from water. J Environ Manage 2018;224:164-71.

45. Bukhari SS, Behin J, Kazemian H, Rohani S. Conversion of coal fly ash to zeolite utilizing microwave and ultrasound energies: a review. Fuel 2015;140:250-66.

46. You J, Wang H, Xiao T, Wu X, Zhang L, Lu C. Introducing high concentration of hexafluorosilicate anions into an ultra-microporous MOF for highly efficient C2H2/CO2 and C2H2/C2H4 separation. Chem Eng J 2023;477:147001.

47. Yasumura S, Qian Y, Kato T, et al. In situ/operando spectroscopic studies on the NH3–SCR mechanism over Fe–zeolites. ACS Catal 2022;12:9983-93.

48. Romero-sáez M, Divakar D, Aranzabal A, González-velasco J, González-marcos J. Catalytic oxidation of trichloroethylene over Fe-ZSM-5: influence of the preparation method on the iron species and the catalytic behavior. Appl Catal B Environ 2016;180:210-8.

49. Zeng J, Chen S, Fan Z, Wang C, Chang H, Li J. Simultaneous selective catalytic reduction of NO and N2O by NH3 over Fe-zeolite catalysts. Ind Eng Chem Res 2020;59:19500-9.

50. Lari GM, Mondelli C, Pérez-ramı́rez J. Gas-phase oxidation of glycerol to dihydroxyacetone over tailored iron zeolites. ACS Catal 2015;5:1453-61.

51. Liang L, Liu C, Jiang F, et al. Carbon dioxide capture and conversion by an acid-base resistant metal-organic framework. Nat Commun 2017;8:1233.

52. Najafi AM, Soltanali S, Ghassabzadeh H. Enhancing the CO2, CH4, and N2 adsorption and kinetic performance on FAU zeolites for CO2 capture from flue gas by metal incorporation technique. Chem Eng J 2023;468:143719.

Chemical Synthesis
ISSN 2769-5247 (Online)

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/