REFERENCES
1. Li S, Shi W, Liu W, et al. A duodecennial national synthesis of antibiotics in China’s major rivers and seas (2005-2016). Sci Total Environ 2018;615:906-17.
2. Rodriguez-Narvaez OM, Peralta-Hernandez JM, Goonetilleke A, Bandala ER. Treatment technologies for emerging contaminants in water: a review. Chem Eng J 2017;323:361-80.
3. Li S, Hu J. Photolytic and photocatalytic degradation of tetracycline: effect of humic acid on degradation kinetics and mechanisms. J Hazard Mater 2016;318:134-44.
4. Reheman A, Kadeer K, Okitsu K, et al. Facile photo-ultrasonic assisted reduction for preparation of rGO/Ag2CO3 nanocomposites with enhanced photocatalytic oxidation activity for tetracycline. Ultrason Sonochem 2019;51:166-77.
5. Cheng Z, Ling L, Wu Z, Fang J, Westerhoff P, Shang C. Novel visible light-driven photocatalytic chlorine activation process for carbamazepine degradation in drinking water. Environ Sci Technol 2020;54:11584-93.
6. Chiu Y, Chang T, Chen C, Sone M, Hsu Y. Mechanistic insights into photodegradation of organic dyes using heterostructure photocatalysts. Catalysts 2019;9:430.
7. Shen J, Li Y, Zhao H, et al. Modulating the photoelectrons of g-C3N4 via coupling MgTi2O5 as appropriate platform for visible-light-driven photocatalytic solar energy conversion. Nano Res 2019;12:1931-6.
8. Ye S, Yan M, Tan X, et al. Facile assembled biochar-based nanocomposite with improved graphitization for efficient photocatalytic activity driven by visible light. Appl Catal B Environ 2019;250:78-88.
9. Deng Y, Zhou Z, Zeng H, et al. Phosphorus and kalium co-doped g-C3N4 with multiple-locus synergies to degrade atrazine: Insights into the depth analysis of the generation and role of singlet oxygen. Appl Catal B Environ 2023;320:121942.
10. Chen L, Maigbay MA, Li M, Qiu X. Synthesis and modification strategies of g-C3N4 nanosheets for photocatalytic applications. Adv Powder Mater 2024;3:100150.
11. Liu T, Zhang D, Yin K, Yang C, Luo S, Crittenden JC. Degradation of thiacloprid via unactivated peroxymonosulfate: the overlooked singlet oxygen oxidation. Chem Eng J 2020;388:124264.
12. Wang K, Xing Z, Meng D, et al. Hollow MoSe2@Bi2S3/CdS core-shell nanostructure as dual Z-scheme heterojunctions with enhanced full spectrum photocatalytic-photothermal performance. Appl Catal B Environ 2021;281:119482.
13. Zhang L, Wang J, Wang H, et al. Rational design of smart adsorbent equipped with a sensitive indicator via ligand exchange: a hierarchical porous mixed-ligand MOF for simultaneous removal and detection of Hg2+. Nano Res 2021;14:1523-32.
14. Yang M, Tan CF, Lu W, Zeng K, Ho GW. Spectrum tailored defective 2D semiconductor nanosheets aerogel for full-spectrum-driven photothermal water evaporation and photochemical degradation. Adv Funct Mater 2020;30:2004460.
15. Chen R, Zhang H, Dong Y, Shi H. Dual metal ions/BNQDs boost PMS activation over copper tungstate photocatalyst for antibiotic removal: intermediate, toxicity assessment and mechanism. J Mater Sci Technol 2024;170:11-24.
16. Han T, Shi H, Chen Y. Facet-dependent CuO/{010}BiVO4 S-scheme photocatalyst enhanced peroxymonosulfate activation for efficient norfloxacin removal. J Mater Sci Technol 2024;174:30-43.
17. Li H, Sang Y, Chang S, et al. Enhanced ferroelectric-nanocrystal-based hybrid photocatalysis by ultrasonic-wave-generated piezophototronic effect. Nano Lett 2015;15:2372-9.
18. Sun C, Fu Y, Wang Q, Xing L, Liu B, Xue X. Ultrafast piezo-photocatalytic degradation of organic pollutions by Ag2O/tetrapod-ZnO nanostructures under ultrasonic/UV exposure. RSC Adv 2016;6:87446-53.
19. Huang H, Tu S, Du X, Zhang Y. Ferroelectric spontaneous polarization steering charge carriers migration for promoting photocatalysis and molecular oxygen activation. J Colloid Interface Sci 2018;509:113-22.
20. Tang R, Gong D, Zhou Y, et al. Unique g-C3N4/PDI-g-C3N4 homojunction with synergistic piezo-photocatalytic effect for aquatic contaminant control and H2O2 generation under visible light. Appl Catal B Environ 2022;303:120929.
21. Tang R, Zeng H, Feng C, et al. Twisty C-TiO2/PCN S-scheme heterojunction with enhanced n→π* electronic excitation for promoted piezo-photocatalytic effect. Small 2023;19:e2207636.
22. Wang ZL, Song J. Piezoelectric nanogenerators based on zinc oxide nanowire arrays. Science 2006;312:242-6.
24. Chen X, Xu S, Yao N, Shi Y. 1.6 V nanogenerator for mechanical energy harvesting using PZT nanofibers. Nano Lett 2010;10:2133-7.
25. Hu Y, Zhang Y, Xu C, Lin L, Snyder RL, Wang ZL. Self-powered system with wireless data transmission. Nano Lett 2011;11:2572-7.
26. Starr MB, Shi J, Wang X. Piezopotential-driven redox reactions at the surface of piezoelectric materials. Angew Chem Int Ed Engl 2012;51:5962-6.
27. Tan CF, Ong WL, Ho GW. Self-biased hybrid piezoelectric-photoelectrochemical cell with photocatalytic functionalities. ACS Nano 2015;9:7661-70.
28. Li S, Zhao Z, Zhao J, Zhang Z, Li X, Zhang J. Recent advances of ferro-, piezo-, and pyroelectric nanomaterials for catalytic applications. ACS Appl Nano Mater 2020;3:1063-79.
29. Li S, Zhao Z, Yu D, et al. Few-layer transition metal dichalcogenides (MoS2, WS2, and WSe2) for water splitting and degradation of organic pollutants: understanding the piezocatalytic effect. Nano Energy 2019;66:104083.
31. Linic S, Christopher P, Ingram DB. Plasmonic-metal nanostructures for efficient conversion of solar to chemical energy. Nat Mater 2011;10:911-21.
32. Tong F, Liang X, Wang Z, et al. Probing the mechanism of plasmon-enhanced ammonia borane methanolysis on a CuAg alloy at a single-particle level. ACS Catal 2021;11:10814-23.
33. Zheng Z, Tachikawa T, Majima T. Single-particle study of Pt-modified Au nanorods for plasmon-enhanced hydrogen generation in visible to near-infrared region. J Am Chem Soc 2014;136:6870-3.
34. Fei J, Li J. Controlled preparation of porous TiO2-Ag nanostructures through supramolecular assembly for plasmon-enhanced photocatalysis. Adv Mater 2015;27:314-9.
35. Li S, Zhang J, Kibria MG, et al. Remarkably enhanced photocatalytic activity of laser ablated Au nanoparticle decorated BiFeO3 nanowires under visible-light. Chem Commun 2013;49:5856-8.
36. Xu S, Guo L, Sun Q, Wang ZL. Piezotronic effect enhanced plasmonic photocatalysis by AuNPs/BaTiO3 heterostructures. Adv Funct Mater 2019;29:1808737.
37. Li S, Zhao Z, Liu M, et al. Remarkably enhanced photocatalytic performance of Au/AgNbO3 heterostructures by coupling piezotronic with plasmonic effects. Nano Energy 2022;95:107031.
38. Xu J, Zhang Q, Gao X, et al. Highly efficient FeIII -initiated self-cycled fenton system in piezo-catalytic process for organic pollutants degradation. Angew Chem Int Ed Engl 2023;135:e202307018.
39. Chen F, Huang H, Ye L, et al. Thickness-dependent facet junction control of layered BiOIO3 Single crystals for highly efficient CO2 photoreduction. Adv Funct Mater 2018;28:1804284.
40. Zhou FQ, Fan JC, Xu QJ, Min YL. BiVO4 nanowires decorated with CdS nanoparticles as Z-scheme photocatalyst with enhanced H2 generation. Appl Catal B Environ 2017;201:77-83.
41. Kim TW, Choi KS. Nanoporous BiVO4 photoanodes with dual-layer oxygen evolution catalysts for solar water splitting. Science 2014;343:990-4.
42. Zhang B, Wang L, Zhang Y, Ding Y, Bi Y. Ultrathin FeOOH nanolayers with abundant oxygen vacancies on BiVO4 photoanodes for efficient water oxidation. Angew Chem Int Ed Engl 2018;57:2248-52.
43. Li R, Zhang F, Wang D, et al. Spatial separation of photogenerated electrons and holes among {010} and {110} crystal facets of BiVO4. Nat Commun 2013;4:1432.
44. Ling J, Wang K, Wang Z, Huang H, Zhang G. Enhanced piezoelectric-induced catalysis of SrTiO3 nanocrystal with well-defined facets under ultrasonic vibration. Ultrason Sonochem 2020;61:104819.
45. Wei Y, Zhang Y, Geng W, Su H, Long M. Efficient bifunctional piezocatalysis of Au/BiVO4 for simultaneous removal of
46. Zhang Y, Liu Y, Zhang T, et al. In situ monitoring of the spatial distribution of oxygen vacancies and enhanced photocatalytic performance at the single-particle level. Nano Lett 2023;23:1244-51.
47. Anwer S, Bharath G, Iqbal S, et al. Synthesis of edge-site selectively deposited Au nanocrystals on TiO2 nanosheets: an efficient heterogeneous catalyst with enhanced visible-light photoactivity. Electrochim Acta 2018;283:1095-104.
48. Zhang J, Lu Y, Ge L, et al. Novel AuPd bimetallic alloy decorated 2D BiVO4 nanosheets with enhanced photocatalytic performance under visible light irradiation. Appl Catal B Environ 2017;204:385-93.
49. Wang S, He T, Chen P, et al. In situ formation of oxygen vacancies achieving near-complete charge separation in planar BiVO4 photoanodes. Adv Mater 2020;32:e2001385.
50. Li H, Sun Y, Cai B, et al. Hierarchically Z-scheme photocatalyst of Ag@AgCl decorated on BiVO4 (040) with enhancing photoelectrochemical and photocatalytic performance. Appl Catal B Environ 2015;170-1:206-14.
51. Gu S, Li W, Wang F, Wang S, Zhou H, Li H. Synthesis of buckhorn-like BiVO4 with a shell of CeOx nanodots: effect of heterojunction structure on the enhancement of photocatalytic activity. Appl Catal B Environ 2015;170-1:186-94.
52. Van CN, Chang WS, Chen JW, et al. Heteroepitaxial approach to explore charge dynamics across Au/BiVO4 interface for photoactivity enhancement. Nano Energy 2015;15:625-33.
53. Wu N. Plasmonic metal-semiconductor photocatalysts and photoelectrochemical cells: a review. Nanoscale 2018;10:2679-96.
54. Tian Y, Tatsuma T. Plasmon-induced photoelectrochemistry at metal nanoparticles supported on nanoporous TiO2. Chem Commun 2004:1810-1.
55. Tian Y, Tatsuma T. Mechanisms and applications of plasmon-induced charge separation at TiO2 films loaded with gold nanoparticles. J Am Chem Soc 2005;127:7632-7.
56. Cushing SK, Li J, Meng F, et al. Photocatalytic activity enhanced by plasmonic resonant energy transfer from metal to semiconductor. J Am Chem Soc 2012;134:15033-41.
57. Ding X, Zhao K, Zhang L. Enhanced photocatalytic removal of sodium pentachlorophenate with self-doped Bi2WO6 under visible light by generating more superoxide ions. Environ Sci Technol 2014;48:5823-31.