REFERENCES

1. Li S, Shi W, Liu W, et al. A duodecennial national synthesis of antibiotics in China’s major rivers and seas (2005-2016). Sci Total Environ 2018;615:906-17.

2. Rodriguez-Narvaez OM, Peralta-Hernandez JM, Goonetilleke A, Bandala ER. Treatment technologies for emerging contaminants in water: a review. Chem Eng J 2017;323:361-80.

3. Li S, Hu J. Photolytic and photocatalytic degradation of tetracycline: effect of humic acid on degradation kinetics and mechanisms. J Hazard Mater 2016;318:134-44.

4. Reheman A, Kadeer K, Okitsu K, et al. Facile photo-ultrasonic assisted reduction for preparation of rGO/Ag2CO3 nanocomposites with enhanced photocatalytic oxidation activity for tetracycline. Ultrason Sonochem 2019;51:166-77.

5. Cheng Z, Ling L, Wu Z, Fang J, Westerhoff P, Shang C. Novel visible light-driven photocatalytic chlorine activation process for carbamazepine degradation in drinking water. Environ Sci Technol 2020;54:11584-93.

6. Chiu Y, Chang T, Chen C, Sone M, Hsu Y. Mechanistic insights into photodegradation of organic dyes using heterostructure photocatalysts. Catalysts 2019;9:430.

7. Shen J, Li Y, Zhao H, et al. Modulating the photoelectrons of g-C3N4 via coupling MgTi2O5 as appropriate platform for visible-light-driven photocatalytic solar energy conversion. Nano Res 2019;12:1931-6.

8. Ye S, Yan M, Tan X, et al. Facile assembled biochar-based nanocomposite with improved graphitization for efficient photocatalytic activity driven by visible light. Appl Catal B Environ 2019;250:78-88.

9. Deng Y, Zhou Z, Zeng H, et al. Phosphorus and kalium co-doped g-C3N4 with multiple-locus synergies to degrade atrazine: Insights into the depth analysis of the generation and role of singlet oxygen. Appl Catal B Environ 2023;320:121942.

10. Chen L, Maigbay MA, Li M, Qiu X. Synthesis and modification strategies of g-C3N4 nanosheets for photocatalytic applications. Adv Powder Mater 2024;3:100150.

11. Liu T, Zhang D, Yin K, Yang C, Luo S, Crittenden JC. Degradation of thiacloprid via unactivated peroxymonosulfate: the overlooked singlet oxygen oxidation. Chem Eng J 2020;388:124264.

12. Wang K, Xing Z, Meng D, et al. Hollow MoSe2@Bi2S3/CdS core-shell nanostructure as dual Z-scheme heterojunctions with enhanced full spectrum photocatalytic-photothermal performance. Appl Catal B Environ 2021;281:119482.

13. Zhang L, Wang J, Wang H, et al. Rational design of smart adsorbent equipped with a sensitive indicator via ligand exchange: a hierarchical porous mixed-ligand MOF for simultaneous removal and detection of Hg2+. Nano Res 2021;14:1523-32.

14. Yang M, Tan CF, Lu W, Zeng K, Ho GW. Spectrum tailored defective 2D semiconductor nanosheets aerogel for full-spectrum-driven photothermal water evaporation and photochemical degradation. Adv Funct Mater 2020;30:2004460.

15. Chen R, Zhang H, Dong Y, Shi H. Dual metal ions/BNQDs boost PMS activation over copper tungstate photocatalyst for antibiotic removal: intermediate, toxicity assessment and mechanism. J Mater Sci Technol 2024;170:11-24.

16. Han T, Shi H, Chen Y. Facet-dependent CuO/{010}BiVO4 S-scheme photocatalyst enhanced peroxymonosulfate activation for efficient norfloxacin removal. J Mater Sci Technol 2024;174:30-43.

17. Li H, Sang Y, Chang S, et al. Enhanced ferroelectric-nanocrystal-based hybrid photocatalysis by ultrasonic-wave-generated piezophototronic effect. Nano Lett 2015;15:2372-9.

18. Sun C, Fu Y, Wang Q, Xing L, Liu B, Xue X. Ultrafast piezo-photocatalytic degradation of organic pollutions by Ag2O/tetrapod-ZnO nanostructures under ultrasonic/UV exposure. RSC Adv 2016;6:87446-53.

19. Huang H, Tu S, Du X, Zhang Y. Ferroelectric spontaneous polarization steering charge carriers migration for promoting photocatalysis and molecular oxygen activation. J Colloid Interface Sci 2018;509:113-22.

20. Tang R, Gong D, Zhou Y, et al. Unique g-C3N4/PDI-g-C3N4 homojunction with synergistic piezo-photocatalytic effect for aquatic contaminant control and H2O2 generation under visible light. Appl Catal B Environ 2022;303:120929.

21. Tang R, Zeng H, Feng C, et al. Twisty C-TiO2/PCN S-scheme heterojunction with enhanced n→π* electronic excitation for promoted piezo-photocatalytic effect. Small 2023;19:e2207636.

22. Wang ZL, Song J. Piezoelectric nanogenerators based on zinc oxide nanowire arrays. Science 2006;312:242-6.

23. Wang ZL. Piezotronic and piezophototronic effects. J Phys Chem Lett 2010;1:1388-93.

24. Chen X, Xu S, Yao N, Shi Y. 1.6 V nanogenerator for mechanical energy harvesting using PZT nanofibers. Nano Lett 2010;10:2133-7.

25. Hu Y, Zhang Y, Xu C, Lin L, Snyder RL, Wang ZL. Self-powered system with wireless data transmission. Nano Lett 2011;11:2572-7.

26. Starr MB, Shi J, Wang X. Piezopotential-driven redox reactions at the surface of piezoelectric materials. Angew Chem Int Ed Engl 2012;51:5962-6.

27. Tan CF, Ong WL, Ho GW. Self-biased hybrid piezoelectric-photoelectrochemical cell with photocatalytic functionalities. ACS Nano 2015;9:7661-70.

28. Li S, Zhao Z, Zhao J, Zhang Z, Li X, Zhang J. Recent advances of ferro-, piezo-, and pyroelectric nanomaterials for catalytic applications. ACS Appl Nano Mater 2020;3:1063-79.

29. Li S, Zhao Z, Yu D, et al. Few-layer transition metal dichalcogenides (MoS2, WS2, and WSe2) for water splitting and degradation of organic pollutants: understanding the piezocatalytic effect. Nano Energy 2019;66:104083.

30. Zhang X, Chen YL, Liu RS, Tsai DP. Plasmonic photocatalysis. Rep Prog Phys 2013;76:046401.

31. Linic S, Christopher P, Ingram DB. Plasmonic-metal nanostructures for efficient conversion of solar to chemical energy. Nat Mater 2011;10:911-21.

32. Tong F, Liang X, Wang Z, et al. Probing the mechanism of plasmon-enhanced ammonia borane methanolysis on a CuAg alloy at a single-particle level. ACS Catal 2021;11:10814-23.

33. Zheng Z, Tachikawa T, Majima T. Single-particle study of Pt-modified Au nanorods for plasmon-enhanced hydrogen generation in visible to near-infrared region. J Am Chem Soc 2014;136:6870-3.

34. Fei J, Li J. Controlled preparation of porous TiO2-Ag nanostructures through supramolecular assembly for plasmon-enhanced photocatalysis. Adv Mater 2015;27:314-9.

35. Li S, Zhang J, Kibria MG, et al. Remarkably enhanced photocatalytic activity of laser ablated Au nanoparticle decorated BiFeO3 nanowires under visible-light. Chem Commun 2013;49:5856-8.

36. Xu S, Guo L, Sun Q, Wang ZL. Piezotronic effect enhanced plasmonic photocatalysis by AuNPs/BaTiO3 heterostructures. Adv Funct Mater 2019;29:1808737.

37. Li S, Zhao Z, Liu M, et al. Remarkably enhanced photocatalytic performance of Au/AgNbO3 heterostructures by coupling piezotronic with plasmonic effects. Nano Energy 2022;95:107031.

38. Xu J, Zhang Q, Gao X, et al. Highly efficient FeIII -initiated self-cycled fenton system in piezo-catalytic process for organic pollutants degradation. Angew Chem Int Ed Engl 2023;135:e202307018.

39. Chen F, Huang H, Ye L, et al. Thickness-dependent facet junction control of layered BiOIO3 Single crystals for highly efficient CO2 photoreduction. Adv Funct Mater 2018;28:1804284.

40. Zhou FQ, Fan JC, Xu QJ, Min YL. BiVO4 nanowires decorated with CdS nanoparticles as Z-scheme photocatalyst with enhanced H2 generation. Appl Catal B Environ 2017;201:77-83.

41. Kim TW, Choi KS. Nanoporous BiVO4 photoanodes with dual-layer oxygen evolution catalysts for solar water splitting. Science 2014;343:990-4.

42. Zhang B, Wang L, Zhang Y, Ding Y, Bi Y. Ultrathin FeOOH nanolayers with abundant oxygen vacancies on BiVO4 photoanodes for efficient water oxidation. Angew Chem Int Ed Engl 2018;57:2248-52.

43. Li R, Zhang F, Wang D, et al. Spatial separation of photogenerated electrons and holes among {010} and {110} crystal facets of BiVO4. Nat Commun 2013;4:1432.

44. Ling J, Wang K, Wang Z, Huang H, Zhang G. Enhanced piezoelectric-induced catalysis of SrTiO3 nanocrystal with well-defined facets under ultrasonic vibration. Ultrason Sonochem 2020;61:104819.

45. Wei Y, Zhang Y, Geng W, Su H, Long M. Efficient bifunctional piezocatalysis of Au/BiVO4 for simultaneous removal of 4-chlorophenol and Cr(VI) in water. Appl Catal B Environ 2019;259:118084.

46. Zhang Y, Liu Y, Zhang T, et al. In situ monitoring of the spatial distribution of oxygen vacancies and enhanced photocatalytic performance at the single-particle level. Nano Lett 2023;23:1244-51.

47. Anwer S, Bharath G, Iqbal S, et al. Synthesis of edge-site selectively deposited Au nanocrystals on TiO2 nanosheets: an efficient heterogeneous catalyst with enhanced visible-light photoactivity. Electrochim Acta 2018;283:1095-104.

48. Zhang J, Lu Y, Ge L, et al. Novel AuPd bimetallic alloy decorated 2D BiVO4 nanosheets with enhanced photocatalytic performance under visible light irradiation. Appl Catal B Environ 2017;204:385-93.

49. Wang S, He T, Chen P, et al. In situ formation of oxygen vacancies achieving near-complete charge separation in planar BiVO4 photoanodes. Adv Mater 2020;32:e2001385.

50. Li H, Sun Y, Cai B, et al. Hierarchically Z-scheme photocatalyst of Ag@AgCl decorated on BiVO4 (040) with enhancing photoelectrochemical and photocatalytic performance. Appl Catal B Environ 2015;170-1:206-14.

51. Gu S, Li W, Wang F, Wang S, Zhou H, Li H. Synthesis of buckhorn-like BiVO4 with a shell of CeOx nanodots: effect of heterojunction structure on the enhancement of photocatalytic activity. Appl Catal B Environ 2015;170-1:186-94.

52. Van CN, Chang WS, Chen JW, et al. Heteroepitaxial approach to explore charge dynamics across Au/BiVO4 interface for photoactivity enhancement. Nano Energy 2015;15:625-33.

53. Wu N. Plasmonic metal-semiconductor photocatalysts and photoelectrochemical cells: a review. Nanoscale 2018;10:2679-96.

54. Tian Y, Tatsuma T. Plasmon-induced photoelectrochemistry at metal nanoparticles supported on nanoporous TiO2. Chem Commun 2004:1810-1.

55. Tian Y, Tatsuma T. Mechanisms and applications of plasmon-induced charge separation at TiO2 films loaded with gold nanoparticles. J Am Chem Soc 2005;127:7632-7.

56. Cushing SK, Li J, Meng F, et al. Photocatalytic activity enhanced by plasmonic resonant energy transfer from metal to semiconductor. J Am Chem Soc 2012;134:15033-41.

57. Ding X, Zhao K, Zhang L. Enhanced photocatalytic removal of sodium pentachlorophenate with self-doped Bi2WO6 under visible light by generating more superoxide ions. Environ Sci Technol 2014;48:5823-31.

58. Huang H, Li X, Wang J, et al. Anionic group self-doping as a promising strategy: band-gap engineering and multi-functional applications of high-performance CO32- -Doped Bi2O2CO3. ACS Catal 2015;5:4094-103.

Chemical Synthesis
ISSN 2769-5247 (Online)

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/