REFERENCES
1. Wu P, Tatsumi T. A novel titanosilicate with MWW structure: III. Highly efficient and selective production of glycidol through epoxidation of allyl alcohol with H2O2. J Catal 2003;214:317-26.
2. Wróblewska A, Fajdek A, Wajzberg J, Milchert E. Epoxidation of allyl alcohol over mesoporous Ti-MCM-41 catalyst. J Hazard Mater 2009;170:405-10.
3. Wróblewska A, Fajdek A. Epoxidation of allyl alcohol to glycidol over the microporous TS-1 catalyst. J Hazard Mater 2010;179:258-65.
4. Zhang T, Solé-Daura A, Fouilloux H, et al. Reaction pathway discrimination in alkene oxidation reactions by designed Ti-siloxy-polyoxometalates. ChemCatChem 2021;13:1220-9.
5. Solé-Daura A, Zhang T, Fouilloux H, et al. Catalyst design for alkene epoxidation by molecular analogues of heterogeneous titanium-silicalite catalysts. ACS Catal 2020;10:4737-50.
6. Zheng R, Liu Z, Wang Y, Xie Z, He M. The future of green energy and chemicals: rational design of catalysis routes. Joule 2022;6:1148-59.
7. Smeets V, Gaigneaux EM, Debecker DP. Titanosilicate epoxidation catalysts: a review of challenges and opportunities. ChemCatChem 2022;14:e202101132.
8. Xu H, Wu P. Two-dimensional zeolites in catalysis: current state-of-the-art and perspectives. Catal Rev 2021;63:234-301.
9. Suib SL, Přech J, Szaniawska E, Čejka J. Recent advances in tetra- (Ti, Sn, Zr, Hf) and pentavalent (Nb, V, Ta) metal-substituted molecular sieve catalysis. Chem Rev 2023;123:877-917.
10. Harris JW, Cordon MJ, Di Iorio JR, Vega-Vila JC, Ribeiro FH, Gounder R. Titration and quantification of open and closed Lewis acid sites in Sn-Beta zeolites that catalyze glucose isomerization. J Catal 2016;335:141-54.
11. Moliner M, Corma A. Advances in the synthesis of titanosilicates: From the medium pore TS-1 zeolite to highly-accessible ordered materials. Microporous Mesoporous Mater 2014;189:31-40.
12. Clerici MG, Bellussi G, Romano U. Synthesis of propylene oxide from propylene and hydrogen peroxide catalyzed by titanium silicalite. J Catal 1991;129:159-67.
13. Clerici MG, Ingallina P. Epoxidation of lower olefins with hydrogen peroxide and titanium silicalite. J Catal 1993;140:71-83.
14. Bai R, Song Y, Bai R, Yu J. Creation of hierarchical titanosilicate TS-1 zeolites. Adv Mater Inter 2021;8:2001095.
15. Wu P, Tatsumi T, Komatsu T, Yashima T. A novel titanosilicate with MWW structure: II. Catalytic properties in the selective oxidation of alkenes. J Catal 2001;202:245-55.
16. Tong W, Yin J, Ding L, Xu H, Wu P. Modified Ti-MWW zeolite as a highly efficient catalyst for the cyclopentene epoxidation reaction. Front Chem 2020;8:585347.
17. Xu L, Huang DD, Li CG, et al. Construction of unique six-coordinated titanium species with an organic amine ligand in titanosilicate and their unprecedented high efficiency for alkene epoxidation. Chem Commun 2015;51:9010-3.
18. Yin J, Xu H, Wang B, et al. Highly selective 1-pentene epoxidation over Ti-MWW with modified microenvironment of Ti active sites. Catal Sci Technol 2020;10:6050-64.
19. Ding L, Yin J, Tong W, et al. Selective synthesis of epichlorohydrin via liquid-phase allyl chloride epoxidation over a modified
20. Na K, Jo C, Kim J, Ahn WS, Ryoo R. MFI titanosilicate nanosheets with single-unit-cell thickness as an oxidation catalyst using peroxides. ACS Catal 2011;1:901-7.
21. Wang L, Sun J, Meng X, et al. A significant enhancement of catalytic activities in oxidation with H2O2 over the TS-1 zeolite by adjusting the catalyst wettability. Chem Commun 2014;50:2012-4.
22. Bregante DT, Johnson AM, Patel AY, et al. Cooperative effects between hydrophilic pores and solvents: catalytic consequences of hydrogen bonding on alkene epoxidation in zeolites. J Am Chem Soc 2019;141:7302-19.
23. Bregante DT, Tan JZ, Schultz RL, et al. Catalytic consequences of oxidant, alkene, and pore structures on alkene epoxidations within titanium silicates. ACS Catal 2020;10:10169-84.
24. Bregante DT, Chan MC, Tan JZ, et al. The shape of water in zeolites and its impact on epoxidation catalysis. Nat Catal 2021;4:797-808.
25. Torres C, Potts DS, Flaherty DW. Solvent mediated interactions on alkene epoxidations in Ti-MFI: effects of solvent identity and silanol density. ACS Catal 2023;13:8925-42.
26. Wells DH Jr, Delgass WN, Thomson KT. Evidence of defect-promoted reactivity for epoxidation of propylene in titanosilicate (TS-1) catalysts: a DFT study. J Am Chem Soc 2004;126:2956-62.
27. Nie X, Ren X, Ji X, et al. Mechanistic insight into propylene epoxidation with H2O2 over titanium silicalite-1: effects of zeolite confinement and solvent. J Phys Chem B 2019;123:7410-23.
28. Bonino F, Damin A, Ricchiardi G, et al. Ti-peroxo species in the TS-1/H2O2/H2O system. J Phys Chem B 2004;108:3573-83.
29. Wang L, Xiong G, Su J, Li P, Guo H. In situ UV Raman spectroscopic study on the reaction intermediates for propylene epoxidation on TS-1. J Phys Chem C 2012;116:9122-31.
30. Wang L, Liu Y, Xie W, et al. Highly efficient and selective production of epichlorohydrin through epoxidation of allyl chloride with hydrogen peroxide over Ti-MWW catalysts. J Catal 2007;246:205-14.
31. Stare J, Henson NJ, Eckert J. Mechanistic aspects of propene epoxidation by hydrogen peroxide. Catalytic role of water molecules, external electric field, and zeolite framework of TS-1. J Chem Inf Model 2009;49:833-46.
32. Sever RR, Root TW. DFT Study of solvent coordination effects on titanium-based epoxidation catalysts. Part one: formation of the titanium hydroperoxo intermediate. J Phys Chem B 2003;107:4080-9.
33. Yin J, Jin X, Xu H, et al. Structured binder-free MWW-type titanosilicate with Si-rich shell for selective and durable propylene epoxidation. Chinese J Catal 2021;42:1561-75.
34. Xu H, Wang Y, Peng R, Jiang J, Zhang K, Wu P. Synthesis of micro-mesoporous Ti-MOR/silica composite spheres in oil-in-water microemulsion system. Chem Res Chin Univ 2022;38:192-9.
35. Li S, Si X, Peng R, et al. “Burr Puzzle”-Like Hierarchical Beta zeolite composed of crisscrossed nanorods. Microporous Mesoporous Mater 2022;335:111843.
36. Zhao X, Zeng S, Zhang X, et al. Generating assembled MFI nanocrystals with reduced b-axis through structure-directing agent exchange induced recrystallization. Angew Chem Int Ed Engl 2021;60:13959-68.
37. Ratnasamy P, Srinivas D. Active sites and reactive intermediates in titanium silicate molecular sieves. 2004. Available from: https://onlinelibrary.wiley.com/doi/10.1002/chin.200450212. [Last accessed on 5 Feb 2024].