REFERENCES

1. Corma A. From microporous to mesoporous molecular sieve materials and their use in catalysis. Chem Rev 1997;97:2373-420.

2. Davis ME. Ordered porous materials for emerging applications. Nature 2002;417:813-21.

3. Dusselier M, Davis ME. Small-pore zeolites: synthesis and catalysis. Chem Rev 2018;118:5265-329.

4. Chen LH, Sun MH, Wang Z, Yang W, Xie Z, Su BL. Hierarchically structured zeolites: from design to application. Chem Rev 2020;120:11194-294.

5. Vogt ET, Weckhuysen BM. Fluid catalytic cracking: recent developments on the grand old lady of zeolite catalysis. Chem Soc Rev 2015;44:7342-70.

6. Galadima A, Muraza O. Hydrocracking catalysts based on hierarchical zeolites: a recent progress. J Ind Eng Chem 2018;61:265-80.

7. Tabak SA, Krambeck FJ, Garwood WE. Conversion of propylene and butylene over ZSM-5 catalyst. AlChE J 1986;32:1526-31.

8. Ogunbadejo B, Aitani A, Čejka J, Kubů M, Al-Khattaf S. The effect of alkylation route on ethyltoluene production over different structural types of zeolites. Chem Eng J 2016;306:1071-80.

9. Ono Y. Transformation of lower alkanes into aromatic hydrocarbons over ZSM-5 zeolites. Catal Rev 2006;34:179-226.

10. Tian P, Wei Y, Ye M, Liu Z. Methanol to olefins (MTO): from fundamentals to commercialization. ACS Catal 2015;5:1922-38.

11. Yang M, Fan D, Wei Y, Tian P, Liu Z. Recent progress in methanol-to-olefins (MTO) catalysts. Adv Mater 2019;31:e1902181.

12. Liu Z, Huang J. Fundamentals of the catalytic conversion of methanol to hydrocarbons. Chem Synth 2022;2:21.

13. Heard CJ, Grajciar L, Uhlik F, et al. Zeolite (In)stability under aqueous or steaming conditions. Adv Mater 2020;32:e2003264.

14. Simancas R, Chokkalingam A, Elangovan SP, et al. Recent progress in the improvement of hydrothermal stability of zeolites. Chem Sci 2021;12:7677-95.

15. Hu Z-P, Han J, Wei Y, Liu Z. Dynamic evolution of zeolite framework and metal-zeolite interface. ACS Catal 2022;12:5060-76.

16. Resasco DE, Crossley SP, Wang B, White JL. Interaction of water with zeolites: a review. Catal Rev 2021;63:302-62.

17. Stanciakova K, Weckhuysen BM. Water-active site interactions in zeolites and their relevance in catalysis. Trends Chem 2021;3:456-68.

18. Smith L, Cheetham AK, Morris RE, et al. On the nature of water bound to a solid acid catalyst. Science 1996;271:799-802.

19. Hunger B, Heuchel M, Matysik S, Beck K, Einicke WD. Adsorption of water on ZSM-5 zeolites. Thermochim Acta 1995;269-70:599-611.

20. Randrianandraina J, Badawi M, Cardey B, et al. Adsorption of water in Na-LTA zeolites: an ab initio molecular dynamics investigation. Phys Chem Chem Phys 2021;23:19032-42.

21. Heard CJ, Grajciar L, Rice CM, et al. Fast room temperature lability of aluminosilicate zeolites. Nat Commun 2019;10:4690.

22. Pugh SM, Wright PA, Law DJ, Thompson N, Ashbrook SE. Facile, room-temperature (17)O enrichment of zeolite frameworks revealed by solid-state NMR spectroscopy. J Am Chem Soc 2020;142:900-06.

23. Sun TT, Xu ST, Xiao D, et al. Water-induced structural dynamic process in molecular sieves under mild hydrothermal conditions: ship-in-a-bottle strategy for acidity identification and catalyst modification. Angew Chem Int Ed 2020;59:20672-81.

24. Nielsen M, Brogaard RY, Falsig H, Beato P, Swang O, Svelle S. Kinetics of zeolite dealumination: insights from H-SSZ-13. ACS Catal 2015;5:7131-39.

25. Silaghi MC, Chizallet C, Petracovschi E, Kerber T, Sauer J, Raybaud P. Regioselectivity of Al-O bond hydrolysis during zeolites dealumination unified by brønsted–evans–polanyi relationship. ACS Catal 2014;5:11-15.

26. Silaghi M-C, Chizallet C, Sauer J, Raybaud P. Dealumination mechanisms of zeolites and extra-framework aluminum confinement. J Catal 2016;339:242-55.

27. Yu Z, Zheng A, Wang Q, et al. Insights into the dealumination of zeolite HY revealed by sensitivity-enhanced 27Al DQ-MAS NMR spectroscopy at high field. Angew Chem Int Ed 2010;49:8657-61.

28. Yu Z, Li S, Wang Q, et al. Brønsted/lewis acid synergy in H-ZSM-5 and H-MOR zeolites studied by 1H and 27Al DQ-MAS solid-state NMR spectroscopy. J Phys Chem C 2011;115:22320-27.

29. Holzinger J, Beato P, Lundegaard LF, Skibsted J. Distribution of aluminum over the tetrahedral sites in ZSM-5 zeolites and their evolution after steam treatment. J Phys Chem C 2018;122:15595-613.

30. Kalantzopoulos GN, Lundvall F, Thorshaug K, et al. Factors determining microporous material stability in water: the curious case of SAPO-37. Chem Mater 2020;32:1495-505.

31. Zhang X, Cheng D, Chen F, Zhan X. Dealumination kinetics of composite ZSM-5/mordenite zeolite during steam treatment: an in-situ DRIFTS study. Chin J Chem Eng 2018;26:545-50.

32. Agostini G, Lamberti C, Palin L, et al. In situ XAS and XRPD parametric rietveld refinement to understand dealumination of Y zeolite catalyst. J Am Chem Soc 2010;132:667-78.

33. Malola S, Svelle S, Bleken FL, Swang O. Detailed reaction paths for zeolite dealumination and desilication from density functional calculations. Angew Chem Int Ed Engl 2012;51:652-5.

34. Stanciakova K, Ensing B, Göltl F, Bulo RE, Weckhuysen BM. Cooperative role of water molecules during the initial stage of water-induced zeolite dealumination. ACS Catal 2019;9:5119-35.

35. Fan B, Zhu D, Wang L, Xu S, Wei Y, Liu Z. Dynamic evolution of Al species in the hydrothermal dealumination process of CHA zeolites. Inorg Chem Front 2022;9:3609-18.

36. Bai X, Zhang J, Liu C, Xu S, Wei Y, Liu Z. Solid-state NMR study on dealumination mechanism of H-MOR zeolite by high-temperature hydrothermal treatment. Micropor Mesopor Mat 2023;354:112555.

37. Ravi M, Sushkevich VL, van Bokhoven JA. Towards a better understanding of Lewis acidic aluminium in zeolites. Nat Mater 2020;19:1047-56.

38. Wang Z, Wang L, Jiang Y, Hunger M, Huang J. Cooperativity of brønsted and lewis acid sites on zeolite for glycerol dehydration. ACS Catal 2014;4:1144-7.

39. Zhao S, Yang W, Kim KD, et al. Synergy of extraframework Al3+ cations and brønsted acid sites on hierarchical ZSM-5 zeolites for butanol-to-olefin conversion. J Phys Chem C 2021;125:11665-76.

40. Li S, Zheng A, Su Y, et al. Brønsted/lewis acid synergy in dealuminated HY zeolite:  a combined solid-state NMR and theoretical calculation Study. J Am Chem Soc 2007;129:11161-71.

41. Liu C, Li G, Hensen EJM, Pidko EA. Nature and catalytic role of extraframework aluminum in faujasite zeolite: a theoretical perspective. ACS Catal 2015;5:7024-33.

42. Chen K, Horstmeier S, Nguyen VT, et al. Structure and catalytic characterization of a second framework Al(IV) site in zeolite catalysts revealed by NMR at 35.2 T. J Am Chem Soc 2020;142:7514-23.

43. Chen K, Gan Z, Horstmeier S, White JL. Distribution of aluminum species in zeolite catalysts: (27)Al NMR of framework, partially-coordinated framework, and non-framework moieties. J Am Chem Soc 2021;143:6669-80.

44. Chen K, Zornes A, Nguyen V, et al. (17)O labeling reveals paired active sites in zeolite catalysts. J Am Chem Soc 2022;144:16916-29.

45. Yi X, Ko HH, Deng F, Liu SB, Zheng A. Solid-state (31)P NMR mapping of active centers and relevant spatial correlations in solid acid catalysts. Nat Protoc 2020;15:3527-55.

46. Jaegers NR, Mueller KT, Wang Y, Hu JZ. Variable temperature and pressure operando MAS NMR for catalysis science and related materials. Acc Chem Res 2020;53:611-19.

47. Wang W, Xu J, Deng F. Recent advances in solid-state NMR of zeolite catalysts. Natl Sci Rev 2022;9:nwac155.

48. Hunger M. Multinuclear solid-state NMR studies of acidic and non-acidic hydroxyl protons in zeolites. Solid State Nucl Magn Reson 1996;6:1-29.

49. Fyfe CA, Gobbi GC, Klinowski J, Thomas JM, Ramdas S. Resolving crystallographically distinct tetrahedral sites in silicalite and ZSM-5 by solid-state NMR. Nature 1982;296:530-33.

50. Fyfe CA, Bretherton JL, Lam LY. Solid-State NMR detection, characterization, and quantification of the multiple aluminum environments in US-Y catalysts by 27Al MAS and MQMAS experiments at very high field. J Am Chem Soc 2001;123:5285-91.

51. Zheng A, Liu SB, Deng F. Acidity characterization of heterogeneous catalysts by solid-state NMR spectroscopy using probe molecules. Solid State Nucl Magn Reson 2013;55-6:12-27.

52. Li J, Liu M, Li S, Guo X, Song C. Influence of diffusion and acid properties on methane and propane selectivity in methanol-to-olefins reaction. Ind Eng Chem Res 2019;58:1896-905.

53. Kabalan I, Michelin L, Rigolet S, et al. Influence of downsizing of zeolite crystals on the orthorhombic ↔ monoclinic phase transition in pure silica MFI-type. Solid State Sci 2016;58:111-14.

54. van Koningsveld H. High-temperature (350 K) orthorhombic framework structure of zeolite H-ZSM-5. Acta Cryst 1990;46:731-35.

55. van Koningsveld H, Jansen JC, van Bekkum H. The monoclinic framework structure of zeolite H-ZSM-5. Comparison with the orthorhombic framework of as-synthesized ZSM-5. Zeolites 1990;10:235-42.

56. van Koningsveld H, Jansen JC, van Bekkum H. The orthorhombic/monoclinic transition in single crystals of zeolite ZSM-5. Zeolites 1987;7:564-68.

57. Conner WC, Vincent R, Man P, Fraissard J. Flexibility in zeolites:29Si NMR studies of ZSM-5 frame transitions. Catal Lett 1990;4:75-83.

58. Wu EL, Lawton SL, Olson DH, Rohrman AC, Kokotailo GT. ZSM-5-type materials. Factors affecting crystal symmetry. J Phys Chem 1979;83:2777-81.

59. Geurts FMM, Kentgens APM, Veeman WS. 27Al nutation NMR of zeolites. Chem Phys Lett 1985;120:206-10.

60. Hu JZ, Wan C, Vjunov A, et al. 27Al MAS NMR studies of HBEA zeolite at low to high magnetic fields. J Phys Chem C 2017;121:12849-54.

61. van Bokhoven JA, Koningsberger DC, Kunkeler P, van Bekkum H, Kentgens APM. Stepwise dealumination of zeolite beta at specific T-sites observed with 27Al MAS and 27Al MQ MAS NMR. J Am Chem Soc 2000;122:12842-47.

62. Frydman L, Harwood JS. Isotropic spectra of half-Integer quadrupolar spins from bidimensional magic-angle spinning NMR. J Am Chem Soc 1995;117:5367-68.

63. Hu M, Wang C, Chu Y, et al. Unravelling the reactivity of framework lewis acid sites towards methanol activation on H-ZSM-5 zeolite with solid-state NMR spectroscopy. Angew Chem Int Ed Engl 2022;61:e202207400.

64. Zeng S, Li J, Wang N, et al. Investigation of ethanol conversion on H-ZSM-5 zeolite by in situ solid-state NMR. Energy Fuels 2021;35:12319-28.

65. Sivadinarayana C, Ganapathy S, Guisnet M, Choudhary VR. Resolution enhancement in the 29Si MASS NMR spectra of high silica ZSM-5. J Catal 1994;147:364-66.

66. Hunger M, Ernst S, Steuernagel S, Weitkamp J. High-field 1H MAS NMR investigations of acidic and non-acidic hydroxyl groups in zeolites H-Beta, H-ZSM-5, H-ZSM-58 and H-MCM-22. Microporous Mater 1996;6:349-53.

67. Chen K, Abdolrhamani M, Sheets E, Freeman J, Ward G, White JL. Direct detection of multiple acidic proton sites in zeolite HZSM-5. J Am Chem Soc 2017;139:18698-704.

68. Treps L, Demaret C, Wisser D, et al. Spectroscopic expression of the external surface sites of H-ZSM-5. J Phys Chem C 2021;125:2163-81.

69. Dib E, Costa IM, Vayssilov GN, Aleksandrov HA, Mintova S. Complex H-bonded silanol network in zeolites revealed by IR and NMR spectroscopy combined with DFT calculations. J Mater Chem A 2021;9:27347-52.

70. Schroeder C, Siozios V, Hunger M, Hansen MR, Koller H. Disentangling brønsted acid sites and hydrogen-bonded silanol groups in high-silica zeolite H-ZSM-5. J Phys Chem C 2020;124:23380-6.

71. Vayssilov GN, Aleksandrov HA, Dib E, Costa IM, Nesterenko N, Mintova S. Superacidity and spectral signatures of hydroxyl groups in zeolites. Micropor Mesopor Mat 2022;343:112144.

72. Zhang WP, Ma D, Liu XC, Liu XM, Bao XH. Perfluorotributylamine as a probe molecule for distinguishing internal and external acidic sites in zeolites by high-resolution H-1 MAS NMR spectroscopy. Chem Commun 1999;12:1091-2.

73. Schroeder C, Siozios V, Mück-Lichtenfeld C, Hunger M, Hansen MR, Koller H. Hydrogen bond formation of brønsted acid sites in zeolites. Chem Mater 2020;32:1564-74.

74. Huo H, Peng L, Grey CP. Low Temperature 1H MAS NMR spectroscopy studies of proton motion in zeolite HZSM-5. J Phys Chem C 2009;113:8211-9.

75. Ong LH, Dömök M, Olindo R, van Veen AC, Lercher JA. Dealumination of HZSM-5 via steam-treatment. Micropor Mesopor Mat 2012;164:9-20.

76. Li J, Liu M, Guo X, et al. Influence of Al coordinates on hierarchical structure and T atoms redistribution during base leaching of ZSM-5. Ind Eng Chem Res 2018;57:15375-84.

77. Jiao J, Altwasser S, Wang W, Weitkamp J, Hunger M. State of aluminum in dealuminated, nonhydrated zeolites Y investigated by multinuclear solid-state NMR spectroscopy. J Phys Chem B 2004;108:14305-10.

78. Schallmoser S, Ikuno T, Wagenhofer MF, et al. Impact of the local environment of Brønsted acid sites in ZSM-5 on the catalytic activity in n-pentane cracking. J Catal 2014;316:93-102.

79. Zecchina A, Bordiga S, Spoto G, et al. Low-temperature Fourier-transform infrared investigation of the interaction of CO with nanosized ZSM5 and silicalite. J Chem Soc, Faraday Trans 1992;88:2959-69.

80. Omegna A, Vasic M, Anton van Bokhoven J, Pirngruber G, Prins R. Dealumination and realumination of microcrystalline zeolite beta: an XRD, FTIR and quantitative multinuclear (MQ) MAS NMR study. Phys Chem Chem Phys 2004;6:447-52.

Chemical Synthesis
ISSN 2769-5247 (Online)

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/