REFERENCES

1. Li Y, Wang X, Miao J, et al. Chiral Transition Metal Oxides: Synthesis, Chiral Origins, and Perspectives. Adv Mater 2020;32:e1905585.

2. Simeonov SP, Nunes JP, Guerra K, Kurteva VB, Afonso CA. Synthesis of chiral cyclopentenones. Chem Rev 2016;116:5744-893.

3. Xue YP, Cao CH, Zheng YG. Enzymatic asymmetric synthesis of chiral amino acids. Chem Soc Rev 2018;47:1516-61.

4. H RT. Salvarsan or 606 (dioxy-diamino-arsenobenzol): its chemistry, pharmacy, and therapeutics. Nature 1911;86:412.

5. Oliveira AL, Viegas MF, da Silva SL, Soares AM, Ramos MJ, Fernandes PA. The chemistry of snake venom and its medicinal potential. Nat Rev Chem 2022;6:451-69.

6. Wang X. Indole alkaloid synthesis via radical cascade reactions. Chem 2017;2:749-50.

7. Rice CP, McCarty GW, Bialek-Kalinski K, Zabetakis K, Torrents A, Hapeman CJ. Corrigendum to “Analysis of metolachlor ethane sulfonic acid (MESA) chirality in groundwater: a tool for dating groundwater movement in agricultural settings” [Sci. Total Environ. 560-561 (2016) 36-43]. Sci Total Environ 2016;742:140736.

8. Zhang H, Spiteller M, Guenther K, Boehmler G, Zuehlke S. Degradation of a chiral nonylphenol isomer in two agricultural soils. Environ Pollut 2009;157:1904-10.

9. Zhang Q, Zhang Z, Tang B, et al. Mechanistic insights into stereospecific bioactivity and dissipation of chiral fungicide triticonazole in agricultural management. J Agric Food Chem 2018;66:7286-93.

10. Barreiro JC, Tiritan ME, Cass QB. Challenges and innovations in chiral drugs in an environmental and bioanalysis perspective. TrAC Trends Anal Chem 2021;142:116326.

11. Fu Y, Borrull F, Marcé RM, Fontanals N. Enantiomeric fraction determination of chiral drugs in environmental samples using chiral liquid chromatography and mass spectrometry. Trends Environ Anal Chem 2021;29:e00115.

12. Sanganyado E, Lu Z, Fu Q, Schlenk D, Gan J. Chiral pharmaceuticals: a review on their environmental occurrence and fate processes. Water Res 2017;124:527-42.

13. Duan Y, Che S. Chiral mesostructured inorganic materials with optical chiral response. Adv Mater 2023;35:e2205088.

14. Gu ZG, Zhan C, Zhang J, Bu X. Chiral chemistry of metal-camphorate frameworks. Chem Soc Rev 2016;45:3122-44.

15. Kuang H, Xu C, Tang Z. Emerging chiral materials. Adv Mater 2020;32:e2005110.

16. Bentley R. Role of sulfur chirality in the chemical processes of biology. Chem Soc Rev 2005;34:609-24.

17. Hussain M, Rupp F, Wendel HP, Gehring FK. Bioapplications of acoustic crystals, a review. TrAC Trends Anal Chem 2018;102:194-209.

18. Nau C, Strichartz GR. Drug chirality in anesthesia. Anesthesiology 2002;97:497-502.

19. Caban M, Stepnowski P. How to decrease pharmaceuticals in the environment? A review. Environ Chem Lett 2021;19:3115-38.

20. Kar S, Sanderson H, Roy K, Benfenati E, Leszczynski J. Green chemistry in the synthesis of pharmaceuticals. Chem Rev 2022;122:3637-710.

21. Kelly SA, Pohle S, Wharry S, et al. Application of ω-transaminases in the pharmaceutical industry. Chem Rev 2018;118:349-67.

22. Pilz M, Cavelius P, Qoura F, Awad D, Brück T. Lipopeptides development in cosmetics and pharmaceutical applications: a comprehensive review. Biotechnol Adv 2023;67:108210.

23. Wang G, Ang HT, Dubbaka SR, O’Neill P, Wu J. Multistep automated synthesis of pharmaceuticals. Trends Chem 2023;5:432-45.

24. Hu M, Feng H, Yuan Y, Zheng Y, Tang BZ. Chiral AIEgens - Chiral recognition, CPL materials and other chiral applications. Coord Chem Rev 2020;416:213329.

25. Pop F, Zigon N, Avarvari N. Main-group-based electro- and photoactive chiral materials. Chem Rev 2019;119:8435-78.

26. Xue M, Li B, Qiu S, Chen B. Emerging functional chiral microporous materials: synthetic strategies and enantioselective separations. Mater Today 2016;19:503-15.

27. Zhang Q, Xue S, Li A, Ren S. Functional materials in chiral capillary electrophoresis. Coord Chem Rev 2021;445:214108.

28. Zhang Y, Yu S, Han B, et al. Circularly polarized luminescence in chiral materials. Matter 2022;5:837-75.

29. Tay HM, Kyratzis N, Thoonen S, Boer SA, Turner DR, Hua C. Synthetic strategies towards chiral coordination polymers. Coord Chem Rev 2021;435:213763.

30. Zhang G, Cheng X, Wang Y, Zhang W. Supramolecular chiral polymeric aggregates: construction and applications. Aggregate 2023;4:e262.

31. Chen LJ, Yang HB, Shionoya M. Chiral metallosupramolecular architectures. Chem Soc Rev 2017;46:2555-76.

32. Feng HT, Yuan YX, Xiong JB, Zheng YS, Tang BZ. Macrocycles and cages based on tetraphenylethylene with aggregation-induced emission effect. Chem Soc Rev 2018;47:7452-76.

33. Jędrzejewska H, Szumna A. Making a right or left choice: chiral self-sorting as a tool for the formation of discrete complex structures. Chem Rev 2017;117:4863-99.

34. Pan M, Wu K, Zhang J, Su C. Chiral metal-organic cages/containers (MOCs): from structural and stereochemical design to applications. Coord Chem Rev 2019;378:333-49.

35. Van Der Voort P, Esquivel D, De Canck E, Goethals F, Van Driessche I, Romero-Salguero FJ. Periodic Mesoporous Organosilicas: from simple to complex bridges; a comprehensive overview of functions, morphologies and applications. Chem Soc Rev 2013;42:3913-55.

36. Zhang D, Ronson TK, Zou YQ, Nitschke JR. Metal-organic cages for molecular separations. Nat Rev Chem 2021;5:168-82.

37. Borsley S, Haugland MM, Oldknow S, et al. Electrostatic forces in field-perturbed equilibria: nanopore analysis of cage complexes. Chem 2019;5:1275-92.

38. Cooper JA, Borsley S, Lusby PJ, Cockroft SL. Discrimination of supramolecular chirality using a protein nanopore. Chem Sci 2017;8:5005-9.

39. Kovalska VB, Vakarov SV, Kuperman MV, et al. Induced chirality of cage metal complexes switched by their supramolecular and covalent binding. Dalton Trans 2018;47:1036-52.

40. Li B, Zheng B, Zhang W, Zhang D, Yang XJ, Wu B. Site-selective binding of peripheral chiral guests induces stereospecificity in A4L6 tetrahedral anion cages. J Am Chem Soc 2020;142:6304-11.

41. Li Y, Dong J, Gong W, et al. Artificial biomolecular channels: enantioselective transmembrane transport of amino acids mediated by homochiral zirconium metal-organic cages. J Am Chem Soc 2021;143:20939-51.

42. Jiao J, Tan C, Li Z, Liu Y, Han X, Cui Y. Design and assembly of chiral coordination cages for asymmetric sequential reactions. J Am Chem Soc 2018;140:2251-9.

43. Luo N, Ao YF, Wang DX, Wang QQ. Exploiting anion-π interactions for efficient and selective catalysis with chiral molecular cages. Angew Chem Int Ed Engl 2021;60:20650-5.

44. Tan C, Chu D, Tang X, Liu Y, Xuan W, Cui Y. Supramolecular coordination cages for asymmetric catalysis. Chemistry 2019;25:662-72.

45. Tan C, Jiao J, Li Z, Liu Y, Han X, Cui Y. Design and assembly of a chiral metallosalen-based octahedral coordination cage for supramolecular asymmetric catalysis. Angew Chem Int Ed Engl 2018;57:2085-90.

46. Wang Y, Sun Y, Shi P, et al. Chaperone-like chiral cages for catalyzing enantio-selective supramolecular polymerization. Chem Sci 2019;10:8076-82.

47. Zhang D, Martinez A, Dutasta JP. Emergence of hemicryptophanes: from synthesis to applications for recognition, molecular machines, and supramolecular catalysis. Chem Rev 2017;117:4900-42.

48. Deng DR, Li C, Weng JC, et al. Thin nano cages with limited hollow space for ultrahigh sulfur loading lithium-sulfur batteries. ACS Appl Mater Interfaces 2022;14:45414-22.

49. Li H, Huang Y, Zhang Y, et al. An ultrathin functional layer based on porous organic cages for selective ion sieving and lithium-sulfur batteries. Nano Lett 2022;22:2030-7.

50. Li J, Qi J, Jin F, et al. Room temperature all-solid-state lithium batteries based on a soluble organic cage ionic conductor. Nat Commun 2022;13:2031.

51. Li X, Xu D, Wang A, Peng C, Liu X, Luo J. Metal-organic cage as fluorescent probe for LiPF6 in lithium batteries. Green Energy Environ 2023;In Press.

52. Peng L, Sun Y, Guo S, Li C. Correction: highly efficient construction of hollow Co-Nx nanocube cage dispersion implanted with porous carbonized nanofibers for Li-O2 batteries. J Mater Chem A 2022;10:740-51.

53. Zhang L, Jia Y, Meng F, et al. A naphthalene organic cage captured sodium polysulphide as cathode materials for lithium-ion sulfide batteries. J Alloys Compd 2022;923:166488.

54. Zhang X, Su K, Mohamed AGA, et al. Photo-assisted charge/discharge Li-organic battery with a charge-separated and redox-active C60@porous organic cage cathode. Energy Environ Sci 2022;15:780-5.

55. Li W, Zhou Y, Gao T, et al. Circularly polarized luminescent Eu4(LR)4 cage for enantiomeric excess and concentration simultaneous determination of chiral diamines. ACS Appl Mater Interfaces 2022;14:55979-88.

56. Sun YL, Wang Z, Ma H, et al. Chiral emissive porous organic cages. Chem Commun 2023;59:302-5.

57. Tang X, Jiang H, Si Y, et al. Endohedral functionalization of chiral metal-organic cages for encapsulating achiral dyes to induce circularly polarized luminescence. Chem 2021;7:2771-86.

58. Wu K, Tessarolo J, Baksi A, Clever GH. Guest-modulated circularly polarized luminescence by ligand-to-ligand chirality transfer in heteroleptic PdII coordination cages. Angew Chem Int Ed Engl 2022;61:e202205725.

59. Zheng A, Zhao T, Jin X, Miao W, Duan P. Circularly polarized luminescent porous crystalline nanomaterials. Nanoscale 2022;14:1123-35.

60. Chen SQ, Zhai QG, Li SN, Jiang YC, Hu MC. Channel partition into nanoscale polyhedral cages of a triple-self-interpenetrated metal-organic framework with high CO2 uptake. Inorg Chem 2015;54:10-2.

61. Goronzy DP, Staněk J, Avery E, et al. Influence of terminal carboxyl groups on the structure and reactivity of functionalized m-carboranethiolate self-assembled monolayers. Chem Mater 2020;32:6800-9.

62. Grunder S, Valente C, Whalley AC, et al. Molecular gauge blocks for building on the nanoscale. Chemistry 2012;18:15632-49.

63. Stang PJ, Olenyuk B, Muddiman DC, Smith RD. Transition-metal-mediated rational design and self-assembly of chiral, nanoscale supramolecular polyhedra with unique T symmetry. Organometallics 1997;16:3094-6.

64. Chaudhari AK, Tan JC. Mechanochromic MOF nanoplates: spatial molecular isolation of light-emitting guests in a sodalite framework structure. Nanoscale 2018;10:3953-60.

65. Bajpayee N, Vijayakanth T, Rencus-Lazar S, et al. Exploring helical peptides and foldamers for the design of metal helix frameworks: current trends and future perspectives. Angew Chem Int Ed Engl 2023;62:e202214583.

66. Han D, Yao Z. Chiral mass spectrometry: an overview. TrAC Trends Anal Chem 2020;123:115763.

67. Lipkowitz KB. Atomistic modeling of enantioselective binding. Acc Chem Res 2000;33:555-62.

68. Scriba GKE. Chiral recognition in separation sciences. Part II: Macrocyclic glycopeptide, donor-acceptor, ion-exchange, ligand-exchange and micellar selectors. TrAC Trends Anal Chem 2019;119:115628.

69. Wang S, Li L, Xiao Y, Wang Y. Recent advances in cyclodextrins-based chiral-recognizing platforms. TrAC Trends Anal Chem 2019;121:115691.

70. Zehnacker A, Suhm MA. Chirality recognition between neutral molecules in the gas phase. Angew Chem Int Ed Engl 2008;47:6970-92.

71. Zor E, Bingol H, Ersoz M. Chiral sensors. TrAC Trends Anal Chem 2019;121:115662.

72. Zou J, Zhao G, Zhao G, Yu J. Fast and sensitive recognition of enantiomers by electrochemical chiral analysis: recent advances and future perspectives. Coord Chem Rev 2022;471:214732.

73. Berijani K, Chang L, Gu Z. Chiral templated synthesis of homochiral metal-organic frameworks. Coord Chem Rev 2023;474:214852.

74. Daintree LS, Kordikowski A, York P. Separation processes for organic molecules using SCF Technologies. Adv Drug Deliv Rev 2008;60:351-72.

75. Fan W, Matsuno T, Han Y, et al. Synthesis and chiral resolution of twisted carbon nanobelts. J Am Chem Soc 2021;143:15924-9.

76. Noorduin WL, van der Asdonk P, Meekes H, et al. Complete chiral resolution using additive-induced crystal size bifurcation during grinding. Angew Chem Int Ed Engl 2009;48:3278-80.

77. Xie R, Chu LY, Deng JG. Membranes and membrane processes for chiral resolution. Chem Soc Rev 2008;37:1243-63.

78. Zhou F, Shemchuk O, Charpentier MD, et al. Simultaneous chiral resolution of two racemic compounds by preferential cocrystallization*. Angew Chem Int Ed Engl 2021;60:20264-8.

79. Beaulieu S, Comby A, Descamps D, et al. Photoexcitation circular dichroism in chiral molecules. Nature Phys 2018;14:484-9.

80. Kong XT, Khosravi Khorashad L, Wang Z, Govorov AO. Photothermal circular dichroism induced by plasmon resonances in chiral metamaterial absorbers and bolometers. Nano Lett 2018;18:2001-8.

81. Quan M, Pang XY, Jiang W. Circular dichroism based chirality sensing with supramolecular host-guest chemistry. Angew Chem Int Ed Engl 2022;61:e202201258.

82. Zhang Y, Rouxel JR, Autschbach J, Govind N, Mukamel S. X-ray circular dichroism signals: a unique probe of local molecular chirality. Chem Sci 2017;8:5969-78.

83. Guo JX, Yang C, Yan XP. “Thiol-ene” click synthesis of chiral covalent organic frameworks for gas chromatography. J Mater Chem A 2021;9:21151-7.

84. Welch CJ. Are we approaching a speed limit for the chromatographic separation of enantiomers? ACS Cent Sci 2017;3:823-9.

85. Yuan C, Jia W, Yu Z, et al. Are highly stable covalent organic frameworks the key to universal chiral stationary phases for liquid and gas chromatographic separations? J Am Chem Soc 2022;144:891-900.

86. Zhou X, Liu Q, Wang H. Chiral resolution of DL-glutamic acid by a chiral additive. J Chem Tech Biotech 2022;97:1240-6.

87. Cheng Q, Ma Q, Pei H, Mo Z. Chiral membranes for enantiomer separation: a comprehensive review. Sep Purif Technol 2022;292:121034.

88. Wu Q, Lv H, Zhao L. Applications of carbon nanomaterials in chiral separation. TrAC Trends Anal Chem 2020;129:115941.

89. Zhang QP, Wang Z, Zhang ZW, et al. Triptycene-based chiral porous polyimides for enantioselective membrane separation. Angew Chem Int Ed Engl 2021;60:12781-5.

90. O'Neil LG, Bower JF. Electrophilic aminating agents in total synthesis. Angew Chem Int Ed Engl 2021;60:25640-66.

91. Wu Q, Sun Y, Gao J, et al. Applications of hybrid organic-inorganic materials in chiral separation. TrAC Trends Anal Chem 2017;95:140-8.

92. Yasui M, Ota R, Tsukano C, Takemoto Y. Total synthesis of avenaol. Nat Commun 2017;8:674.

93. Duan C, Cheng Z, Wang B, et al. Chiral photonic liquid crystal films derived from cellulose nanocrystals. Small 2021;17:e2007306.

94. Nayani K, Kim YK, Abbott NL. Colloids: chiral interactions in liquid crystals. Nat Mater 2017;17:14-5.

95. Yuan Y, Martinez A, Senyuk B, Tasinkevych M, Smalyukh II. Chiral liquid crystal colloids. Nat Mater 2018;17:71-9.

96. Hou Y, Liang J, Kuang X, Kuang R. Simultaneous electrochemical recognition of tryptophan and penicillamine enantiomers based on MOF-modified β-CD. Carbohydr Polym 2022;290:119474.

97. Zhang L, Wang G, Xiong C, et al. Chirality detection of amino acid enantiomers by organic electrochemical transistor. Biosens Bioelectron 2018;105:121-8.

98. Brunel JM. BINOL: a versatile chiral reagent. Chem Rev 2005;105:857-97.

99. Parmar D, Sugiono E, Raja S, Rueping M. Complete field guide to asymmetric BINOL-phosphate derived Brønsted acid and metal catalysis: history and classification by mode of activation; Brønsted acidity, hydrogen bonding, ion pairing, and metal phosphates. Chem Rev 2014;114:9047-153.

100. Ramakrishna E, Tang JD, Tao JJ, et al. Self-assembly of chiral BINOL cages via imine condensation. Chem Commun 2021;57:9088-91.

101. Liu C, Jin Y, Qi D, et al. Enantioselective assembly and recognition of heterochiral porous organic cages deduced from binary chiral components. Chem Sci 2022;13:7014-20.

102. Cui DX, Geng Y, Kou JN, et al. Chiral self-sorting and guest recognition of porous aromatic cages. Nat Commun 2022;13:4011.

103. Gingras M. One hundred years of helicene chemistry. Part 1: non-stereoselective syntheses of carbohelicenes. Chem Soc Rev 2013;42:968-1006.

104. Shen Y, Chen CF. Helicenes: synthesis and applications. Chem Rev 2012;112:1463-535.

105. Malik AU, Gan F, Shen C, et al. Chiral organic cages with a triple-stranded helical structure derived from helicene. J Am Chem Soc 2018;140:2769-72.

106. Schulte TR, Holstein JJ, Clever GH. Chiral self-discrimination and guest recognition in helicene-based coordination cages. Angew Chem Int Ed Engl 2019;58:5562-6.

107. Lei Y, Chen Q, Liu P, et al. Molecular cages self-assembled by imine condensation in water. Angew Chem Int Ed Engl 2021;60:4705-11.

108. Li G, Ronson TK, Lavendomme R, et al. Enantiopure FeII4L4 cages bind steroids stereoselectively. Chem 2023;9:1549-61.

109. Hou YJ, Wu K, Wei ZW, et al. Design and enantioresolution of homochiral Fe(II)-Pd(II) coordination cages from stereolabile metalloligands: stereochemical stability and enantioselective separation. J Am Chem Soc 2018;140:18183-91.

110. Zhu C, Tang H, Yang K, et al. Homochiral dodecanuclear lanthanide “cage in cage” for enantioselective separation. J Am Chem Soc 2021;143:12560-6.

111. Zhang D, Ronson TK, Greenfield JL, et al. Enantiopure [Cs+/Xe⊂cryptophane]⊂FeII4L4 hierarchical superstructures. J Am Chem Soc 2019;141:8339-45.

112. Xue W, Pesce L, Bellamkonda A, et al. Subtle stereochemical effects influence binding and purification abilities of an FeII4L4 cage. J Am Chem Soc 2023;145:5570-7.

113. Hu SJ, Guo XQ, Zhou LP, et al. Guest-driven self-assembly and chiral induction of photofunctional lanthanide tetrahedral cages. J Am Chem Soc 2022;144:4244-53.

114. Wu G, Chen Y, Fang S, et al. A self-assembled cage for wide-scope chiral recognition in water. Angew Chem Int Ed Engl 2021;60:16594-9.

115. Chen H, Gu ZG, Zhang J. Surface chiroselective assembly of enantiopure crystalline porous films containing bichiral building blocks. Chem Sci 2021;12:12346-52.

116. Chen R, Chen G, He Y, Zhang J. Coordination assembly of tetrahedral Ti4(embonate)6 cages with alkaline-earth metal ions. Chin J Struct Chem 2022;41:2201001-6.

117. Teng Q, Xiang G, Chen GH, Chen SM, He YP, Zhang J. Coordination assembly of tetrahedral Zr4(embonate)6 cages with Eu3+ ions. Inorg Chem 2021;60:18178-84.

118. He YP, Yuan LB, Chen GH, et al. Water-soluble and ultrastable Ti4L6 tetrahedron with coordination assembly function. J Am Chem Soc 2017;139:16845-51.

119. Chen GH, He YP, Yu Y, et al. Post-assembly modification of homochiral titanium-organic cages for recognition and separation of molecular isomers. Angew Chem Int Ed Engl 2023;62:e202300726.

120. Buhse T, Cruz JM, Noble-Terán ME, et al. Spontaneous deracemizations. Chem Rev 2021;121:2147-229.

121. Hou X, Xu T, Wang Y, Liu S, Tong J, Liu B. Superficial chiral etching on achiral metal-organic framework for enantioselective sorption. ACS Appl Mater Interfaces 2017;9:32264-9.

122. Soloshonok VA, Roussel C, Kitagawa O, Sorochinsky AE. Self-disproportionation of enantiomers via achiral chromatography: a warning and an extra dimension in optical purifications. Chem Soc Rev 2012;41:4180-8.

123. Katoono R, Obara Y, Fujiwara K, Suzuki T. Enhanced circular dichroism at elevated temperatures through complexation-induced transformation of a three-layer cyclophane with dualistic dynamic helicity. Chem Sci 2018;9:2222-9.

124. Hu QP, Zhou H, Huang TY, Ao YF, Wang DX, Wang QQ. Chirality gearing in an achiral cage through adaptive binding. J Am Chem Soc 2022;144:6180-4.

125. Cheng L, Liu K, Duan Y, et al. Adaptive chirality of an achiral cage: chirality transfer, induction, and circularly polarized luminescence through aqueous host-guest complexation. CCS Chem 2021;3:2749-63.

126. Cheng L, Tian P, Duan H, et al. Chiral adaptive recognition with sequence specificity of aromatic dipeptides in aqueous solution by an achiral cage. Chem Sci 2023;14:833-42.

Chemical Synthesis
ISSN 2769-5247 (Online)

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/