REFERENCES
1. Li Y, Wang X, Miao J, et al. Chiral Transition Metal Oxides: Synthesis, Chiral Origins, and Perspectives. Adv Mater 2020;32:e1905585.
2. Simeonov SP, Nunes JP, Guerra K, Kurteva VB, Afonso CA. Synthesis of chiral cyclopentenones. Chem Rev 2016;116:5744-893.
3. Xue YP, Cao CH, Zheng YG. Enzymatic asymmetric synthesis of chiral amino acids. Chem Soc Rev 2018;47:1516-61.
4. H RT. Salvarsan or 606 (dioxy-diamino-arsenobenzol): its chemistry, pharmacy, and therapeutics. Nature 1911;86:412.
5. Oliveira AL, Viegas MF, da Silva SL, Soares AM, Ramos MJ, Fernandes PA. The chemistry of snake venom and its medicinal potential. Nat Rev Chem 2022;6:451-69.
7. Rice CP, McCarty GW, Bialek-Kalinski K, Zabetakis K, Torrents A, Hapeman CJ. Corrigendum to “Analysis of metolachlor ethane sulfonic acid (MESA) chirality in groundwater: a tool for dating groundwater movement in agricultural settings” [Sci. Total Environ. 560-561 (2016) 36-43]. Sci Total Environ 2016;742:140736.
8. Zhang H, Spiteller M, Guenther K, Boehmler G, Zuehlke S. Degradation of a chiral nonylphenol isomer in two agricultural soils. Environ Pollut 2009;157:1904-10.
9. Zhang Q, Zhang Z, Tang B, et al. Mechanistic insights into stereospecific bioactivity and dissipation of chiral fungicide triticonazole in agricultural management. J Agric Food Chem 2018;66:7286-93.
10. Barreiro JC, Tiritan ME, Cass QB. Challenges and innovations in chiral drugs in an environmental and bioanalysis perspective. TrAC Trends Anal Chem 2021;142:116326.
11. Fu Y, Borrull F, Marcé RM, Fontanals N. Enantiomeric fraction determination of chiral drugs in environmental samples using chiral liquid chromatography and mass spectrometry. Trends Environ Anal Chem 2021;29:e00115.
12. Sanganyado E, Lu Z, Fu Q, Schlenk D, Gan J. Chiral pharmaceuticals: a review on their environmental occurrence and fate processes. Water Res 2017;124:527-42.
13. Duan Y, Che S. Chiral mesostructured inorganic materials with optical chiral response. Adv Mater 2023;35:e2205088.
14. Gu ZG, Zhan C, Zhang J, Bu X. Chiral chemistry of metal-camphorate frameworks. Chem Soc Rev 2016;45:3122-44.
16. Bentley R. Role of sulfur chirality in the chemical processes of biology. Chem Soc Rev 2005;34:609-24.
17. Hussain M, Rupp F, Wendel HP, Gehring FK. Bioapplications of acoustic crystals, a review. TrAC Trends Anal Chem 2018;102:194-209.
19. Caban M, Stepnowski P. How to decrease pharmaceuticals in the environment? A review. Environ Chem Lett 2021;19:3115-38.
20. Kar S, Sanderson H, Roy K, Benfenati E, Leszczynski J. Green chemistry in the synthesis of pharmaceuticals. Chem Rev 2022;122:3637-710.
21. Kelly SA, Pohle S, Wharry S, et al. Application of ω-transaminases in the pharmaceutical industry. Chem Rev 2018;118:349-67.
22. Pilz M, Cavelius P, Qoura F, Awad D, Brück T. Lipopeptides development in cosmetics and pharmaceutical applications: a comprehensive review. Biotechnol Adv 2023;67:108210.
23. Wang G, Ang HT, Dubbaka SR, O’Neill P, Wu J. Multistep automated synthesis of pharmaceuticals. Trends Chem 2023;5:432-45.
24. Hu M, Feng H, Yuan Y, Zheng Y, Tang BZ. Chiral AIEgens - Chiral recognition, CPL materials and other chiral applications. Coord Chem Rev 2020;416:213329.
25. Pop F, Zigon N, Avarvari N. Main-group-based electro- and photoactive chiral materials. Chem Rev 2019;119:8435-78.
26. Xue M, Li B, Qiu S, Chen B. Emerging functional chiral microporous materials: synthetic strategies and enantioselective separations. Mater Today 2016;19:503-15.
27. Zhang Q, Xue S, Li A, Ren S. Functional materials in chiral capillary electrophoresis. Coord Chem Rev 2021;445:214108.
28. Zhang Y, Yu S, Han B, et al. Circularly polarized luminescence in chiral materials. Matter 2022;5:837-75.
29. Tay HM, Kyratzis N, Thoonen S, Boer SA, Turner DR, Hua C. Synthetic strategies towards chiral coordination polymers. Coord Chem Rev 2021;435:213763.
30. Zhang G, Cheng X, Wang Y, Zhang W. Supramolecular chiral polymeric aggregates: construction and applications. Aggregate 2023;4:e262.
31. Chen LJ, Yang HB, Shionoya M. Chiral metallosupramolecular architectures. Chem Soc Rev 2017;46:2555-76.
32. Feng HT, Yuan YX, Xiong JB, Zheng YS, Tang BZ. Macrocycles and cages based on tetraphenylethylene with aggregation-induced emission effect. Chem Soc Rev 2018;47:7452-76.
33. Jędrzejewska H, Szumna A. Making a right or left choice: chiral self-sorting as a tool for the formation of discrete complex structures. Chem Rev 2017;117:4863-99.
34. Pan M, Wu K, Zhang J, Su C. Chiral metal-organic cages/containers (MOCs): from structural and stereochemical design to applications. Coord Chem Rev 2019;378:333-49.
35. Van Der Voort P, Esquivel D, De Canck E, Goethals F, Van Driessche I, Romero-Salguero FJ. Periodic Mesoporous Organosilicas: from simple to complex bridges; a comprehensive overview of functions, morphologies and applications. Chem Soc Rev 2013;42:3913-55.
36. Zhang D, Ronson TK, Zou YQ, Nitschke JR. Metal-organic cages for molecular separations. Nat Rev Chem 2021;5:168-82.
37. Borsley S, Haugland MM, Oldknow S, et al. Electrostatic forces in field-perturbed equilibria: nanopore analysis of cage complexes. Chem 2019;5:1275-92.
38. Cooper JA, Borsley S, Lusby PJ, Cockroft SL. Discrimination of supramolecular chirality using a protein nanopore. Chem Sci 2017;8:5005-9.
39. Kovalska VB, Vakarov SV, Kuperman MV, et al. Induced chirality of cage metal complexes switched by their supramolecular and covalent binding. Dalton Trans 2018;47:1036-52.
40. Li B, Zheng B, Zhang W, Zhang D, Yang XJ, Wu B. Site-selective binding of peripheral chiral guests induces stereospecificity in
41. Li Y, Dong J, Gong W, et al. Artificial biomolecular channels: enantioselective transmembrane transport of amino acids mediated by homochiral zirconium metal-organic cages. J Am Chem Soc 2021;143:20939-51.
42. Jiao J, Tan C, Li Z, Liu Y, Han X, Cui Y. Design and assembly of chiral coordination cages for asymmetric sequential reactions. J Am Chem Soc 2018;140:2251-9.
43. Luo N, Ao YF, Wang DX, Wang QQ. Exploiting anion-π interactions for efficient and selective catalysis with chiral molecular cages. Angew Chem Int Ed Engl 2021;60:20650-5.
44. Tan C, Chu D, Tang X, Liu Y, Xuan W, Cui Y. Supramolecular coordination cages for asymmetric catalysis. Chemistry 2019;25:662-72.
45. Tan C, Jiao J, Li Z, Liu Y, Han X, Cui Y. Design and assembly of a chiral metallosalen-based octahedral coordination cage for supramolecular asymmetric catalysis. Angew Chem Int Ed Engl 2018;57:2085-90.
46. Wang Y, Sun Y, Shi P, et al. Chaperone-like chiral cages for catalyzing enantio-selective supramolecular polymerization. Chem Sci 2019;10:8076-82.
47. Zhang D, Martinez A, Dutasta JP. Emergence of hemicryptophanes: from synthesis to applications for recognition, molecular machines, and supramolecular catalysis. Chem Rev 2017;117:4900-42.
48. Deng DR, Li C, Weng JC, et al. Thin nano cages with limited hollow space for ultrahigh sulfur loading lithium-sulfur batteries. ACS Appl Mater Interfaces 2022;14:45414-22.
49. Li H, Huang Y, Zhang Y, et al. An ultrathin functional layer based on porous organic cages for selective ion sieving and lithium-sulfur batteries. Nano Lett 2022;22:2030-7.
50. Li J, Qi J, Jin F, et al. Room temperature all-solid-state lithium batteries based on a soluble organic cage ionic conductor. Nat Commun 2022;13:2031.
51. Li X, Xu D, Wang A, Peng C, Liu X, Luo J. Metal-organic cage as fluorescent probe for LiPF6 in lithium batteries. Green Energy Environ 2023;In Press.
52. Peng L, Sun Y, Guo S, Li C. Correction: highly efficient construction of hollow Co-Nx nanocube cage dispersion implanted with porous carbonized nanofibers for Li-O2 batteries. J Mater Chem A 2022;10:740-51.
53. Zhang L, Jia Y, Meng F, et al. A naphthalene organic cage captured sodium polysulphide as cathode materials for lithium-ion sulfide batteries. J Alloys Compd 2022;923:166488.
54. Zhang X, Su K, Mohamed AGA, et al. Photo-assisted charge/discharge Li-organic battery with a charge-separated and redox-active C60@porous organic cage cathode. Energy Environ Sci 2022;15:780-5.
55. Li W, Zhou Y, Gao T, et al. Circularly polarized luminescent Eu4(LR)4 cage for enantiomeric excess and concentration simultaneous determination of chiral diamines. ACS Appl Mater Interfaces 2022;14:55979-88.
57. Tang X, Jiang H, Si Y, et al. Endohedral functionalization of chiral metal-organic cages for encapsulating achiral dyes to induce circularly polarized luminescence. Chem 2021;7:2771-86.
58. Wu K, Tessarolo J, Baksi A, Clever GH. Guest-modulated circularly polarized luminescence by ligand-to-ligand chirality transfer in heteroleptic PdII coordination cages. Angew Chem Int Ed Engl 2022;61:e202205725.
59. Zheng A, Zhao T, Jin X, Miao W, Duan P. Circularly polarized luminescent porous crystalline nanomaterials. Nanoscale 2022;14:1123-35.
60. Chen SQ, Zhai QG, Li SN, Jiang YC, Hu MC. Channel partition into nanoscale polyhedral cages of a triple-self-interpenetrated metal-organic framework with high CO2 uptake. Inorg Chem 2015;54:10-2.
61. Goronzy DP, Staněk J, Avery E, et al. Influence of terminal carboxyl groups on the structure and reactivity of functionalized
62. Grunder S, Valente C, Whalley AC, et al. Molecular gauge blocks for building on the nanoscale. Chemistry 2012;18:15632-49.
63. Stang PJ, Olenyuk B, Muddiman DC, Smith RD. Transition-metal-mediated rational design and self-assembly of chiral, nanoscale supramolecular polyhedra with unique T symmetry. Organometallics 1997;16:3094-6.
64. Chaudhari AK, Tan JC. Mechanochromic MOF nanoplates: spatial molecular isolation of light-emitting guests in a sodalite framework structure. Nanoscale 2018;10:3953-60.
65. Bajpayee N, Vijayakanth T, Rencus-Lazar S, et al. Exploring helical peptides and foldamers for the design of metal helix frameworks: current trends and future perspectives. Angew Chem Int Ed Engl 2023;62:e202214583.
68. Scriba GKE. Chiral recognition in separation sciences. Part II: Macrocyclic glycopeptide, donor-acceptor, ion-exchange, ligand-exchange and micellar selectors. TrAC Trends Anal Chem 2019;119:115628.
69. Wang S, Li L, Xiao Y, Wang Y. Recent advances in cyclodextrins-based chiral-recognizing platforms. TrAC Trends Anal Chem 2019;121:115691.
70. Zehnacker A, Suhm MA. Chirality recognition between neutral molecules in the gas phase. Angew Chem Int Ed Engl 2008;47:6970-92.
72. Zou J, Zhao G, Zhao G, Yu J. Fast and sensitive recognition of enantiomers by electrochemical chiral analysis: recent advances and future perspectives. Coord Chem Rev 2022;471:214732.
73. Berijani K, Chang L, Gu Z. Chiral templated synthesis of homochiral metal-organic frameworks. Coord Chem Rev 2023;474:214852.
74. Daintree LS, Kordikowski A, York P. Separation processes for organic molecules using SCF Technologies. Adv Drug Deliv Rev 2008;60:351-72.
75. Fan W, Matsuno T, Han Y, et al. Synthesis and chiral resolution of twisted carbon nanobelts. J Am Chem Soc 2021;143:15924-9.
76. Noorduin WL, van der Asdonk P, Meekes H, et al. Complete chiral resolution using additive-induced crystal size bifurcation during grinding. Angew Chem Int Ed Engl 2009;48:3278-80.
77. Xie R, Chu LY, Deng JG. Membranes and membrane processes for chiral resolution. Chem Soc Rev 2008;37:1243-63.
78. Zhou F, Shemchuk O, Charpentier MD, et al. Simultaneous chiral resolution of two racemic compounds by preferential cocrystallization*. Angew Chem Int Ed Engl 2021;60:20264-8.
79. Beaulieu S, Comby A, Descamps D, et al. Photoexcitation circular dichroism in chiral molecules. Nature Phys 2018;14:484-9.
80. Kong XT, Khosravi Khorashad L, Wang Z, Govorov AO. Photothermal circular dichroism induced by plasmon resonances in chiral metamaterial absorbers and bolometers. Nano Lett 2018;18:2001-8.
81. Quan M, Pang XY, Jiang W. Circular dichroism based chirality sensing with supramolecular host-guest chemistry. Angew Chem Int Ed Engl 2022;61:e202201258.
82. Zhang Y, Rouxel JR, Autschbach J, Govind N, Mukamel S. X-ray circular dichroism signals: a unique probe of local molecular chirality. Chem Sci 2017;8:5969-78.
83. Guo JX, Yang C, Yan XP. “Thiol-ene” click synthesis of chiral covalent organic frameworks for gas chromatography. J Mater Chem A 2021;9:21151-7.
84. Welch CJ. Are we approaching a speed limit for the chromatographic separation of enantiomers? ACS Cent Sci 2017;3:823-9.
85. Yuan C, Jia W, Yu Z, et al. Are highly stable covalent organic frameworks the key to universal chiral stationary phases for liquid and gas chromatographic separations? J Am Chem Soc 2022;144:891-900.
86. Zhou X, Liu Q, Wang H. Chiral resolution of DL-glutamic acid by a chiral additive. J Chem Tech Biotech 2022;97:1240-6.
87. Cheng Q, Ma Q, Pei H, Mo Z. Chiral membranes for enantiomer separation: a comprehensive review. Sep Purif Technol 2022;292:121034.
88. Wu Q, Lv H, Zhao L. Applications of carbon nanomaterials in chiral separation. TrAC Trends Anal Chem 2020;129:115941.
89. Zhang QP, Wang Z, Zhang ZW, et al. Triptycene-based chiral porous polyimides for enantioselective membrane separation. Angew Chem Int Ed Engl 2021;60:12781-5.
90. O'Neil LG, Bower JF. Electrophilic aminating agents in total synthesis. Angew Chem Int Ed Engl 2021;60:25640-66.
91. Wu Q, Sun Y, Gao J, et al. Applications of hybrid organic-inorganic materials in chiral separation. TrAC Trends Anal Chem 2017;95:140-8.
93. Duan C, Cheng Z, Wang B, et al. Chiral photonic liquid crystal films derived from cellulose nanocrystals. Small 2021;17:e2007306.
94. Nayani K, Kim YK, Abbott NL. Colloids: chiral interactions in liquid crystals. Nat Mater 2017;17:14-5.
95. Yuan Y, Martinez A, Senyuk B, Tasinkevych M, Smalyukh II. Chiral liquid crystal colloids. Nat Mater 2018;17:71-9.
96. Hou Y, Liang J, Kuang X, Kuang R. Simultaneous electrochemical recognition of tryptophan and penicillamine enantiomers based on MOF-modified β-CD. Carbohydr Polym 2022;290:119474.
97. Zhang L, Wang G, Xiong C, et al. Chirality detection of amino acid enantiomers by organic electrochemical transistor. Biosens Bioelectron 2018;105:121-8.
99. Parmar D, Sugiono E, Raja S, Rueping M. Complete field guide to asymmetric BINOL-phosphate derived Brønsted acid and metal catalysis: history and classification by mode of activation; Brønsted acidity, hydrogen bonding, ion pairing, and metal phosphates. Chem Rev 2014;114:9047-153.
100. Ramakrishna E, Tang JD, Tao JJ, et al. Self-assembly of chiral BINOL cages via imine condensation. Chem Commun 2021;57:9088-91.
101. Liu C, Jin Y, Qi D, et al. Enantioselective assembly and recognition of heterochiral porous organic cages deduced from binary chiral components. Chem Sci 2022;13:7014-20.
102. Cui DX, Geng Y, Kou JN, et al. Chiral self-sorting and guest recognition of porous aromatic cages. Nat Commun 2022;13:4011.
103. Gingras M. One hundred years of helicene chemistry. Part 1: non-stereoselective syntheses of carbohelicenes. Chem Soc Rev 2013;42:968-1006.
105. Malik AU, Gan F, Shen C, et al. Chiral organic cages with a triple-stranded helical structure derived from helicene. J Am Chem Soc 2018;140:2769-72.
106. Schulte TR, Holstein JJ, Clever GH. Chiral self-discrimination and guest recognition in helicene-based coordination cages. Angew Chem Int Ed Engl 2019;58:5562-6.
107. Lei Y, Chen Q, Liu P, et al. Molecular cages self-assembled by imine condensation in water. Angew Chem Int Ed Engl 2021;60:4705-11.
108. Li G, Ronson TK, Lavendomme R, et al. Enantiopure FeII4L4 cages bind steroids stereoselectively. Chem 2023;9:1549-61.
109. Hou YJ, Wu K, Wei ZW, et al. Design and enantioresolution of homochiral Fe(II)-Pd(II) coordination cages from stereolabile metalloligands: stereochemical stability and enantioselective separation. J Am Chem Soc 2018;140:18183-91.
110. Zhu C, Tang H, Yang K, et al. Homochiral dodecanuclear lanthanide “cage in cage” for enantioselective separation. J Am Chem Soc 2021;143:12560-6.
111. Zhang D, Ronson TK, Greenfield JL, et al. Enantiopure [Cs+/Xe⊂cryptophane]⊂FeII4L4 hierarchical superstructures. J Am Chem Soc 2019;141:8339-45.
112. Xue W, Pesce L, Bellamkonda A, et al. Subtle stereochemical effects influence binding and purification abilities of an FeII4L4 cage. J Am Chem Soc 2023;145:5570-7.
113. Hu SJ, Guo XQ, Zhou LP, et al. Guest-driven self-assembly and chiral induction of photofunctional lanthanide tetrahedral cages. J Am Chem Soc 2022;144:4244-53.
114. Wu G, Chen Y, Fang S, et al. A self-assembled cage for wide-scope chiral recognition in water. Angew Chem Int Ed Engl 2021;60:16594-9.
115. Chen H, Gu ZG, Zhang J. Surface chiroselective assembly of enantiopure crystalline porous films containing bichiral building blocks. Chem Sci 2021;12:12346-52.
116. Chen R, Chen G, He Y, Zhang J. Coordination assembly of tetrahedral Ti4(embonate)6 cages with alkaline-earth metal ions. Chin J Struct Chem 2022;41:2201001-6.
117. Teng Q, Xiang G, Chen GH, Chen SM, He YP, Zhang J. Coordination assembly of tetrahedral Zr4(embonate)6 cages with Eu3+ ions. Inorg Chem 2021;60:18178-84.
118. He YP, Yuan LB, Chen GH, et al. Water-soluble and ultrastable Ti4L6 tetrahedron with coordination assembly function. J Am Chem Soc 2017;139:16845-51.
119. Chen GH, He YP, Yu Y, et al. Post-assembly modification of homochiral titanium-organic cages for recognition and separation of molecular isomers. Angew Chem Int Ed Engl 2023;62:e202300726.
120. Buhse T, Cruz JM, Noble-Terán ME, et al. Spontaneous deracemizations. Chem Rev 2021;121:2147-229.
121. Hou X, Xu T, Wang Y, Liu S, Tong J, Liu B. Superficial chiral etching on achiral metal-organic framework for enantioselective sorption. ACS Appl Mater Interfaces 2017;9:32264-9.
122. Soloshonok VA, Roussel C, Kitagawa O, Sorochinsky AE. Self-disproportionation of enantiomers via achiral chromatography: a warning and an extra dimension in optical purifications. Chem Soc Rev 2012;41:4180-8.
123. Katoono R, Obara Y, Fujiwara K, Suzuki T. Enhanced circular dichroism at elevated temperatures through complexation-induced transformation of a three-layer cyclophane with dualistic dynamic helicity. Chem Sci 2018;9:2222-9.
124. Hu QP, Zhou H, Huang TY, Ao YF, Wang DX, Wang QQ. Chirality gearing in an achiral cage through adaptive binding. J Am Chem Soc 2022;144:6180-4.
125. Cheng L, Liu K, Duan Y, et al. Adaptive chirality of an achiral cage: chirality transfer, induction, and circularly polarized luminescence through aqueous host-guest complexation. CCS Chem 2021;3:2749-63.