REFERENCES
1. Wu D, Xu F, Sun B, Fu R, He H, Matyjaszewski K. Design and preparation of porous polymers. Chem Rev 2012;112:3959-4015.
2. Wu J, Xu F, Li S, et al. Porous polymers as multifunctional material platforms toward task-specific applications. Adv Mater 2019;31:e1802922.
3. Ji W, Wang T, Ding X, Lei S, Han B. Porphyrin- and phthalocyanine-based porous organic polymers: from synthesis to application. Coord Chem Rev 2021;439:213875.
4. Chen W, Chen P, Zhang G, et al. Macrocycle-derived hierarchical porous organic polymers: synthesis and applications. Chem Soc Rev 2021;50:11684-714.
5. Zhang Z, Jia J, Zhi Y, Ma S, Liu X. Porous organic polymers for light-driven organic transformations. Chem Soc Rev 2022;51:2444-90.
6. Yu SB, Lin F, Tian J, Yu J, Zhang DW, Li ZT. Water-soluble and dispersible porous organic polymers: preparation, functions and applications. Chem Soc Rev 2022;51:434-49.
7. Flory PJ. Molecular size distribution in three dimensional polymers. I. gelation1. J Am Chem Soc 1941;63:3083-90.
9. Wang W, Narain R, Zeng H. Rational design of self-healing tough hydrogels: a mini review. Front Chem 2018;6:497.
10. Zheng C, Zhu J, Yang C, Lu C, Chen Z, Zhuang X. The art of two-dimensional soft nanomaterials. Sci China Chem 2019;62:1145-93.
11. Xu Z, Chu X, Wang Y, Zhang H, Yang W. Three-dimensional polymer networks for solid-state electrochemical energy storage. Chem Eng J 2020;391:123548.
12. Zhu Y, Xu P, Zhang X, Wu D. Emerging porous organic polymers for biomedical applications. Chem Soc Rev 2022;51:1377-414.
13. Tian J, Lin F, Yu S, Yu J, Tang Q, Li Z. Water-dispersible and soluble porous organic polymers for biomedical applications. Aggregate 2022;3:e187.
14. Moulton SE, Wallace GG. 3-dimensional (3D) fabricated polymer based drug delivery systems. J Control Release 2014;193:27-34.
15. Asayama S. Molecular design of polymer-based carriers for plasmid DNA delivery in vitro and in vivo. Chem Lett 2020;49:1-9.
16. Zhang M, Hong Y, Chen W, Wang C. Polymers for DNA vaccine delivery. ACS Biomater Sci Eng 2017;3:108-25.
17. Cheng Y. Design of polymers for intracellular protein and peptide delivery. Chin J Chem 2021;39:1443-9.
18. Calori IR, Braga G, de Jesus PDCC, Bi H, Tedesco AC. Polymer scaffolds as drug delivery systems. Eur Polym J 2020;129:109621.
19. Singh N, Son S, An J, et al. Nanoscale porous organic polymers for drug delivery and advanced cancer theranostics. Chem Soc Rev 2021;50:12883-96.
20. Tang Y, Varyambath A, Ding Y, et al. Porous organic polymers for drug delivery: hierarchical pore structures, variable morphologies, and biological properties. Biomater Sci 2022;10:5369-90.
22. Lv H, Zhang S, Wang B, Cui S, Yan J. Toxicity of cationic lipids and cationic polymers in gene delivery. J Control Release 2006;114:100-9.
23. Warga E, Austin-carter B, Comolli N, Elmer J. Nonviral vehicles for gene delivery. Nano LIFE 2021;11:2130002.
24. Schlegel A, Largeau C, Bigey P, et al. Anionic polymers for decreased toxicity and enhanced in vivo delivery of siRNA complexed with cationic liposomes. J Control Release 2011;152:393-401.
25. Sun Q, Kang Z, Xue L, et al. A collaborative assembly strategy for tumor-targeted siRNA delivery. J Am Chem Soc 2015;137:6000-10.
26. Richter F, Leer K, Martin L, et al. The impact of anionic polymers on gene delivery: how composition and assembly help evading the toxicity-efficiency dilemma. J Nanobiotechnology 2021;19:292.
27. Zhang Y, Shi J, Ma B, et al. Functionalization of polymers for intracellular protein delivery. Prog Polym Sci 2023;146:101751.
28. Zhang Y, Shi J, Ma B, et al. Phosphocholine-functionalized zwitterionic highly branched poly(β-amino ester)s for cytoplasmic protein delivery. ACS Macro Lett 2023;12:626-31.
29. Jakki SL, Ramesh YV, Gowthamarajan K, et al. Novel anionic polymer as a carrier for CNS delivery of anti-Alzheimer drug. Drug Deliv 2016;23:3471-9.
30. Skene WG, Lehn JM. Dynamers: polyacylhydrazone reversible covalent polymers, component exchange, and constitutional diversity. Proc Natl Acad Sci U S A 2004;101:8270-5.
32. Ji S, Xia J, Xu H. Dynamic chemistry of selenium: Se-N and Se-Se dynamic covalent bonds in polymeric systems. ACS Macro Lett 2016;5:78-82.
33. Apostolides DE, Patrickios CS. Dynamic covalent polymer hydrogels and organogels crosslinked through acylhydrazone bonds: synthesis, characterization and applications. Polymer International 2018;67:627-49.
34. Su D, Coste M, Diaconu A, Barboiu M, Ulrich S. Cationic dynamic covalent polymers for gene transfection. J Mater Chem B 2020;8:9385-403.
35. Zhang Y, Qi Y, Ulrich S, Barboiu M, Ramström O. Dynamic covalent polymers for biomedical applications. Mater Chem Front 2020;4:489-506.
36. Zheng N, Xu Y, Zhao Q, Xie T. Dynamic covalent polymer networks: a molecular platform for designing functions beyond chemical recycling and self-healing. Chem Rev 2021;121:1716-45.
37. Liu W, Yang S, Huang L, Xu J, Zhao N. Dynamic covalent polymers enabled by reversible isocyanate chemistry. Chem Commun 2022;58:12399-417.
38. Lin JL, Wang ZK, Xu ZY, et al. Water-soluble flexible organic frameworks that include and deliver proteins. J Am Chem Soc 2020;142:3577-82.
39. Wang Z, Lin J, Zhang Y, et al. Synthesis and short DNA in situ loading and delivery of 4 nm-aperture flexible organic frameworks. Mater Chem Front 2021;5:869-75.
40. Sun JD, Li Q, Haoyang WW, et al. Adsorption-based detoxification of endotoxins by porous flexible organic frameworks. Mol Pharm 2022;19:953-62.
41. Xu ZY, Liu HK, Wu Y, et al. Flexible organic framework-based anthracycline prodrugs for enhanced tumor growth inhibition. ACS Appl Bio Mater 2021;4:4591-7.
42. Wu Y, Liu YY, Liu HK, et al. Flexible organic frameworks sequester neuromuscular blocking agents in vitro and reverse neuromuscular block in vivo. Chem Sci 2022;13:9243-8.
43. Li Q, Sun J, Yang B, et al. Cucurbit[7]uril-threaded flexible organic frameworks: quantitative polycatenation through dynamic covalent chemistry. Chin Chem Lett 2022;33:1988-92.
44. Liu YY, Wang ZK, Yu SB, et al. Conjugating aldoxorubicin to supramolecular organic frameworks: polymeric prodrugs with enhanced therapeutic efficacy and safety. J Mater Chem B 2022;10:4163-71.
45. Jacques V, Dumas S, Sun WC, Troughton JS, Greenfield MT, Caravan P. High-relaxivity magnetic resonance imaging contrast agents. Part 2. Optimization of inner- and second-sphere relaxivity. Invest Radiol 2010;45:613-24.
46. Evans BC, Fletcher RB, Kilchrist KV, et al. An anionic, endosome-escaping polymer to potentiate intracellular delivery of cationic peptides, biomacromolecules, and nanoparticles. Nat Commun 2019;10:5012.
47. Rennick JJ, Johnston APR, Parton RG. Key principles and methods for studying the endocytosis of biological and nanoparticle therapeutics. Nat Nanotechnol 2021;16:266-76.