REFERENCES

1. Qian C, Zhou W, Qiao J, et al. Linkage engineering by harnessing supramolecular interactions to fabricate 2D hydrazone-linked covalent organic framework platforms toward advanced catalysis. J Am Chem Soc 2020;142:18138-49.

2. Song D, Xu W, Li J, et al. “All-in-one” covalent organic framework for photocatalytic CO2 reduction. Chinese J Catal 2022;43:2425-33.

3. Yang Z, Hao W, Su X, et al. Metallosalphen-based 2D covalent organic frameworks with an unprecedented tju topology via K-shaped two-in-one monomers. Chem Mater 2022;34:5888-95.

4. Zhao Z, Chen X, Li B, et al. Spatial regulation of acceptor units in olefin-linked COFs toward highly efficient photocatalytic H2 evolution. Adv Sci 2022;9:2203832.

5. Díaz U, Corma A. Ordered covalent organic frameworks, COFs and PAFs. From preparation to application. Coord Chem Rev 2016;311:85-124.

6. Li J, He Y, Zou Y, Yan Y, Song Z, Shi X. Achieving a stable COF with the combination of “flat” and “twist” large-size rigid synthons for selective gas adsorption and separation. Chin Chem Lett 2022;33:3017-20.

7. Moroni M, Roldan-Molina E, Vismara R, Galli S, Navarro JAR. Impact of pore flexibility in imine-linked covalent organic frameworks on benzene and cyclohexane adsorption. ACS Appl Mater Interfaces 2022;14:40890-901.

8. Zhao Z, Liang S, Kang C, et al. Reversing adsorption and separation of 1-phenylethanol and acetophenone in organic phase via β-ketoenamine-linked covalent organic frameworks. Chem Eng J 2023;454:140531.

9. Tong Y, Sun Z, Wang J, Huang W, Zhang Q. Covalent organic framework containing dual redox centers as an efficient anode in Li-ion batteries. SmartMat 2022;3:685-94.

10. Iqbal R, Yasin G, Hamza M, et al. State of the art two-dimensional covalent organic frameworks: prospects from rational design and reactions to applications for advanced energy storage technologies. Coord Chem Rev 2021;447:214152.

11. Patra BC, Bhattacharya S. New covalent organic square lattice based on porphyrin and tetraphenyl ethylene building blocks toward high-performance supercapacitive energy storage. Chem Mater 2021;33:8512-23.

12. Mohammed AK, Vijayakumar V, Halder A, et al. Weak intermolecular interactions in covalent organic framework-carbon nanofiber based crystalline yet flexible devices. ACS Appl Mater Interfaces 2019;11:30828-37.

13. Wang C, Zhang Z, Zhu Y, Yang C, Wu J, Hu W. 2D covalent organic frameworks: from synthetic strategies to advanced optical-electrical-magnetic functionalities. Adv Mater 2022;34:2102290.

14. Zhao R, Wang T, Li J, et al. Two-dimensional covalent organic frameworks for electrocatalysis: achievements, challenges, and opportunities. Nano Res 2023;16:8570-95.

15. Zhang H, Geng Y, Huang J, Wang Z, Du K, Li H. Charge and mass transport mechanisms in two-dimensional covalent organic frameworks (2D COFs) for electrochemical energy storage devices. Energy Environ Sci 2023;16:889-951.

16. Bhunia S, Deo KA, Gaharwar AK. 2D covalent organic frameworks for biomedical applications. Adv Funct Mater 2020;30:2002046.

17. Guo L, Yang L, Li M, Kuang L, Song Y, Wang L. Covalent organic frameworks for fluorescent sensing: recent developments and future challenges. Coord Chem Rev 2021;440:213957.

18. Jiang S, Meng L, Ma W, et al. Dual-functional two-dimensional covalent organic frameworks for water sensing and harvesting. Mater Chem Front 2021;5:4193-201.

19. Tan Z, Wang J, Xu L, et al. Simultaneous sensing of multiplex volatile organic compounds by adsorption and plasmon dual-induced raman enhancement technique. ACS Sens 2023;8:867-74.

20. Liang RR, Jiang SY, A RH, Zhao X. Two-dimensional covalent organic frameworks with hierarchical porosity. Chem Soc Rev 2020;49:3920-51.

21. Zhi Y, Wang Z, Zhang HL, Zhang Q. Recent progress in metal-free covalent organic frameworks as heterogeneous catalysts. Small 2020;16:2001070.

22. Li C, Yu G. Controllable synthesis and performance modulation of 2D covalent-organic frameworks. Small 2021;17:2100918.

23. Zhang T, Zhang G, Chen L. 2D conjugated covalent organic frameworks: defined synthesis and tailor-made functions. Acc Chem Res 2022;55:795-808.

24. Xu J, Xu Y, Bu XH. Advances in emerging crystalline porous materials. Small 2021;17:2102331.

25. Geng K, Arumugam V, Xu H, Gao Y, Jiang D. Covalent organic frameworks: polymer chemistry and functional design. Prog Polym Sci 2020;108:101288.

26. Côté AP, Benin AI, Ockwig NW, O’Keeffe M, Matzger AJ, Yaghi OM. Porous, crystalline, covalent organic frameworks. Science 2005;310:1166-70.

27. Romero-Muñiz I, Mavrandonakis A, Albacete P, et al. Unveiling the local structure of palladium loaded into imine-linked layered covalent organic frameworks for cross-coupling catalysis. Angew Chem Int Ed Engl 2020;59:13013-20.

28. Liang B, Zhao J, Wang J, et al. Nonlinear optical properties of porphyrin-based covalent organic frameworks determined by steric-orientation of conjugation. J Mater Chem C 2023;11:3354-9.

29. Helweh W, Flanders NC, Wang S, et al. Layered structures of assembled imine-linked macrocycles and two-dimensional covalent organic frameworks give rise to prolonged exciton lifetimes. J Mater Chem C 2022;10:3015-26.

30. Das P, Mandal SK. Flexible and semi-flexible amide-hydrazide decorated fluorescent covalent organic frameworks as on-off pH responsive proton scavengers. ACS Appl Mater Interfaces 2021;13:14160-8.

31. Kang J, Hang J, Chen B, et al. Amide linkages in pyrene-based covalent organic frameworks toward efficient photocatalytic reduction of uranyl. ACS Appl Mater Interfaces 2022;14:57225-34.

32. Zhou ZB, Han XH, Qi QY, Gan SX, Ma DL, Zhao X. A facile, efficient, and general synthetic method to amide-linked covalent organic frameworks. J Am Chem Soc 2022;144:1138-43.

33. Xiao Z, Li L, Tang Y, et al. Covalent organic frameworks with lithiophilic and sulfiphilic dual linkages for cooperative affinity to polysulfides in lithium-sulfur batteries. Energy Stor Mater 2018;12:252-9.

34. Castano I, Evans AM, Dos Reis R, Dravid VP, Gianneschi NC, Dichtel WR. Mapping grains, boundaries, and defects in 2D covalent organic framework thin films. Chem Mater 2021;33:1341-52.

35. Hu J, Gupta SK, Ozdemir J, Beyzavi MH. Applications of dynamic covalent chemistry concept towards tailored covalent organic framework nanomaterials: a review. ACS Appl Nano Mater 2020;3:6239-69.

36. Jackson KT, Reich TE, El-Kaderi HM. Targeted synthesis of a porous borazine-linked covalent organic framework. Chem Commun 2012;48:8823-5.

37. Hota MK, Chandra S, Lei Y, et al. Electrochemical thin-film transistors using covalent organic framework channel. Adv Funct Mater 2022;32:2201120.

38. Xu X, Zhang S, Xu K, Chen H, Fan X, Huang N. Janus Dione-based conjugated covalent organic frameworks with high conductivity as superior cathode materials. J Am Chem Soc 2023;145:1022-30.

39. Zhao Y, Liang Y, Wu D, et al. Ruthenium complex of sp2 carbon-conjugated covalent organic frameworks as an efficient electrocatalyst for hydrogen evolution. Small 2022;18:2107750.

40. Cheng YZ, Ji W, Wu X, Ding X, Liu XF, Han BH. Persistent radical cation sp2 carbon-covalent organic framework for photocatalytic oxidative organic transformations. Appl Catal B Environ 2022;306:121110.

41. Yue JY, Ding XL, Wang YT, et al. Dual functional sp2 carbon-conjugated covalent organic frameworks for fluorescence sensing and effective removal and recovery of Pd2+ ions. J Mater Chem A 2021;9:26861-6.

42. Liang RR, A RH, Xu SQ, Qi QY, Zhao X. Fabricating organic nanotubes through selective disassembly of two-dimensional covalent organic frameworks. J Am Chem Soc 2020;142:70-4.

43. Zeng Y, Zou R, Luo Z, et al. Covalent organic frameworks formed with two types of covalent bonds based on orthogonal reactions. J Am Chem Soc 2015;137:1020-3.

44. Hu J, Zhang J, Lin Z, Xie L, Liao S, Chen X. Construction of a hollow spherical covalent organic framework with olefin and imine dual linkages based on orthogonal reactions. Chem Mater 2022;34:5249-57.

45. Xu X, Wu X, Xu K, Xu H, Chen H, Huang N. Pore partition in two-dimensional covalent organic frameworks. Nat Commun 2023;14:3360.

46. Smith BJ, Dichtel WR. Mechanistic studies of two-dimensional covalent organic frameworks rapidly polymerized from initially homogenous conditions. J Am Chem Soc 2014;136:8783-9.

47. Li Y, Chen Q, Xu T, et al. De novo design and facile synthesis of 2D covalent organic frameworks: a two-in-one strategy. J Am Chem Soc 2019;141:13822-8.

48. Li Y, Chen W, Xing G, Jiang D, Chen L. New synthetic strategies toward covalent organic frameworks. Chem Soc Rev 2020;49:2852-68.

49. Li Y, Su X, Zheng W, et al. Targeted synthesis of isomeric naphthalene-based 2D kagome covalent organic frameworks. Angew Chem Int Ed Engl 2023;62:e202216795.

50. Li G, Wang Z. Micro- and ultramicroporous polyaminals for highly efficient adsorption/separation of C1-C3 hydrocarbons and CO2 in natural gas. ACS Appl Mater Interfaces 2020;12:24488-97.

51. Zhang S, Taylor MK, Jiang L, Ren H, Zhu G. Light hydrocarbon separations using porous organic framework materials. Chemistry 2020;26:3205-21.

52. Li JR, Kuppler RJ, Zhou HC. Selective gas adsorption and separation in metal-organic frameworks. Chem Soc Rev 2009;38:1477-504.

Chemical Synthesis
ISSN 2769-5247 (Online)

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/