REFERENCES

1. Chen Y, Kang Y, Zhao Y, et al. A review of lithium-ion battery safety concerns: the issues, strategies, and testing standards. J Energy Chem 2021;59:83-99.

2. Eftekhari A. On the theoretical capacity/energy of lithium batteries and their counterparts. ACS Sustainable Chem Eng 2019;7:3684-7.

3. Liu JN, Zhao CX, Wang J, Ren D, Li BQ, Zhang Q. A brief history of zinc-air batteries: 140 years of epic adventures. Energy Environ Sci 2022;15:4542-53.

4. Fu J, Liang R, Liu G, et al. Recent progress in electrically rechargeable zinc-air batteries. Adv Mater 2019;31:1805230.

5. Fu J, Cano ZP, Park MG, Yu A, Fowler M, Chen Z. Electrically rechargeable zinc-air batteries: progress, challenges, and perspectives. Adv Mater 2017;29:1604685.

6. Ren S, Duan X, Liang S, Zhang M, Zheng H. Bifunctional electrocatalysts for Zn-air batteries: recent developments and future perspectives. J Mater Chem A 2020;8:6144-82.

7. Zhang D, Hu W. Study on failure mechanism on rechargeable alkaline zinc-air battery during charge/discharge cycles at different depths of discharge. Front Chem 2023;11:1121215.

8. Yadav SK, Deckenbach D, Schneider JJ. Secondary zinc-air batteries: a view on rechargeability aspects. Batteries 2022;8:244.

9. Li H, Guo S, Zhou H. In-situ/operando characterization techniques in lithium-ion batteries and beyond. J Energy Chem 2021;59:191-211.

10. Sun Z, Zhang Y, Liu Y, Hou L, Yuan C. Recent progress on in situ/operando characterization of rechargeable alkali ion batteries. ChemPlusChem 2021;86:1487-96.

11. Liu D, Shadike Z, Lin R, et al. Review of recent development of in situ/operando characterization techniques for lithium battery research. Adv Mater 2019;31:1806620.

12. Chen X, Zhou Z, Karahan HE, Shao Q, Wei L, Chen Y. Recent advances in materials and design of electrochemically rechargeable zinc-air batteries. Small 2018;14:1801929.

13. Yu W, Shang W, He Y, Zhao Z, Ma Y, Tan P. Unraveling the mechanism of non-uniform zinc deposition in rechargeable zinc-based batteries with vertical orientation. Chem Eng J 2022;431:134032.

14. Christensen MK, Mathiesen JK, Simonsen SB, Norby P. Transformation and migration in secondary zinc-air batteries studied by in situ synchrotron X-ray diffraction and X-ray tomography. J Mater Chem A 2019;7:6459-66.

15. Hosseini S, Masoudi Soltani S, Li YY. Current status and technical challenges of electrolytes in zinc-air batteries: an in-depth review. Chem Eng J 2021;408:127241.

16. Yufit V, Tariq F, Eastwood DS, et al. Operando visualization and multi-scale tomography studies of dendrite formation and dissolution in zinc batteries. Joule 2019;3:485-502.

17. Cai Z, Wang J, Lu Z, et al. Ultrafast metal electrodeposition revealed by in situ optical imaging and theoretical modeling towards fast-charging Zn battery chemistry. Angew Chem Int Ed Engl 2022;61:e202116560.

18. Naveed A, Rasheed T, Raza B, et al. Addressing thermodynamic instability of Zn anode: classical and recent advancements. Energy Stor Mater 2022;44:206-30.

19. Arlt T, Schröder D, Krewer U, Manke I. In operando monitoring of the state of charge and species distribution in zinc air batteries using X-ray tomography and model-based simulations. Phys Chem Chem Phys 2014;16:22273-80.

20. Fan X, Yang Z, Xie X, Long W, Wang R, Hou Z. The electrochemical behaviors of Zn-Al-La-hydrotalcite in Zn-Ni secondary cells. J Power Sources 2013;241:404-9.

21. Chen J, Zhou W, Quan Y, et al. Ionic liquid additive enabling anti-freezing aqueous electrolyte and dendrite-free Zn metal electrode with organic/inorganic hybrid solid electrolyte interphase layer. Energy Stor Mater 2022;53:629-37.

22. Hao J, Li X, Zeng X, Li D, Mao J, Guo Z. Deeply understanding the Zn anode behaviour and corresponding improvement strategies in different aqueous Zn-based batteries. Energy Environ Sci 2020;13:3917-49.

23. Zhang Y, Zheng X, Wang N, et al. Anode optimization strategies for aqueous zinc-ion batteries. Chem Sci 2022;13:14246-63.

24. Liu H, Liu Y, Zhu D. Chemical doping of graphene. J Mater Chem 2011;21:3335-45.

25. Zhang J, Zhao Z, Xia Z, Dai L. A metal-free bifunctional electrocatalyst for oxygen reduction and oxygen evolution reactions. Nat Nanotechnol 2015;10:444-52.

26. Li L, Tsang YCA, Xiao D, Zhu G, Zhi C, Chen Q. Phase-transition tailored nanoporous zinc metal electrodes for rechargeable alkaline zinc-nickel oxide hydroxide and zinc-air batteries. Nat Commun 2022;13:2870.

27. Li G, Mezaal MA, Zhang R, Zhang K, Lei L. Electrochemical performance of MnO2-based air cathodes for zinc-air batteries. Fuel Cells 2016;16:395-400.

28. Li J, Li W, Mi H, et al. Bifunctional oxygen electrocatalysis on ultra-thin Co9S8/MnS carbon nanosheets for all-solid-state zinc-air batteries. J Mater Chem A 2021;9:22635-42.

29. Sun C, Alonso JA, Bian J. Recent advances in perovskite-type oxides for energy conversion and storage applications. Adv Energy Mater 2021;11:2000459.

30. Gao Y, Zhang T, Mao Y, Wang J, Sun C. Highly efficient bifunctional layered triple Co, Fe, Ru hydroxides and oxides composite electrocatalysts for zinc-air batteries. J Electroanal Chem 2023;935:117315.

31. Li H, Guo Z, Wang X. Atomic-layer-deposited ultrathin Co9S8 on carbon nanotubes: an efficient bifunctional electrocatalyst for oxygen evolution/reduction reactions and rechargeable Zn-air batteries. J Mater Chem A 2017;5:21353-61.

32. Niu Y, Gong S, Liu X, et al. Engineering iron-group bimetallic nanotubes as efficient bifunctional oxygen electrocatalysts for flexible Zn-air batteries. eScience 2022;2:546-56.

33. Wang Y, Zhang C, Wang X, et al. Engineering carbon-chainmail-shell coated Co9Se8 nanoparticles as efficient and durable catalysts in seawater-based Zn-air batteries. Acta Physico Chimica Sinica 2024;40:2305004.

34. Han X, He G, He Y, et al. Engineering catalytic active sites on cobalt oxide surface for enhanced oxygen electrocatalysis. Adv Energy Mater 2018;8:1702222.

35. Li YW, Zhang WJ, Li J, et al. Fe-MOF-derived efficient ORR/OER bifunctional electrocatalyst for rechargeable zinc-air batteries. ACS Appl Mater Interfaces 2020;12:44710-9.

36. Ma J, Li J, Wang R, et al. Hierarchical porous S-doped Fe-N-C electrocatalyst for high-power-density zinc-air battery. Mater Today Energy 2021;19:100624.

37. Li G, Mu Y, Huang Z, et al. Poly-active centric Co3O4-CeO2/Co-N-C composites as superior oxygen reduction catalysts for Zn-air batteries. Sci China Mater 2021;64:73-84.

38. Chen P, Zhang K, Tang D, et al. Recent progress in electrolytes for Zn-air batteries. Front Chem 2020;8:372.

39. Sharma Y, Aziz M, Yusof J, Kordesch K. Triethanolamine as an additive to the anode to improve the rechargeability of alkaline manganese dioxide batteries. J Power Sources 2001;94:129-31.

40. Yang H, Cao Y, Ai X, Xiao L. Improved discharge capacity and suppressed surface passivation of zinc anode in dilute alkaline solution using surfactant additives. J Power Sources 2004;128:97-101.

41. Zhu Y, Yin J, Zheng X, et al. Concentrated dual-cation electrolyte strategy for aqueous zinc-ion batteries. Energy Environ Sci 2021;14:4463-73.

42. Qiu K, Wang F, Liao M, et al. A fumed SiO2-based composite hydrogel polymer electrolyte for near-neutral zinc-air batteries. Acta Phys Chim Sin 2024;40:2304036.

43. Xu M, Ivey DG, Xie Z, Qu W. Electrochemical behavior of Zn/Zn(II) couples in aprotic ionic liquids based on pyrrolidinium and imidazolium cations and bis(trifluoromethanesulfonyl)imide and dicyanamide anions. Electrochim Acta 2013;89:756-62.

44. Shinde SS, Jung JY, Wagh NK, et al. Ampere-hour-scale zinc-air pouch cells. Nat Energy 2021;6:592-604.

45. Liu Q, Liu R, He C, et al. Advanced polymer-based electrolytes in zinc-air batteries. eScience 2022;2:453-66.

46. Xu M, Ivey DG, Xie Z, Qu W. Rechargeable Zn-air batteries: progress in electrolyte development and cell configuration advancement. J Power Sources 2015;283:358-71.

47. Wang MY, Huang RB, Xiong JF, Tian JH, Li JF, Tian ZQ. Critical role and recent development of separator in zinc-air batteries. Acta Phys Chim Sin 2024;40:2307017.

48. Teng HT, Wang WT, Han XF, Hao X, Yang R, Tian JH. Recent development and perspectives of flexible zinc-air batteries. Acta Phys Chim Sin 2023;39:2107017.

49. Lee HJ, Lim JM, Kim HW, et al. Electrospun polyetherimide nanofiber mat-reinforced, permselective polyvinyl alcohol composite separator membranes: a membrane-driven step closer toward rechargeable zinc-air batteries. J Membr Sci 2016;499:526-37.

50. Liu Y, Liu S, Xie X, et al. A functionalized separator enables dendrite-free Zn anode via metal-polydopamine coordination chemistry. InfoMat 2023;5:e12374.

51. Jana KK, Lue SJ, Huang A, Soesanto JF, Tung KL. Separator membranes for high energy-density batteries. ChemBioEng Rev 2018;5:346-71.

52. Boebinger MG, Lewis JA, Sandoval SE, Mcdowell MT. Understanding transformations in battery materials using in situ and operando experiments: progress and outlook. ACS Energy Lett 2020;5:335-45.

53. Schröder D, Arlt T, Krewer U, Manke I. Analyzing transport paths in the air electrode of a zinc air battery using X-ray tomography. Electrochem Commun 2014;40:88-91.

54. Hack J, Patel D, Bailey JJ, Iacoviello F, Shearing PR, Brett DJL. In situ x-ray computed tomography of zinc-air primary cells during discharge: correlating discharge rate to anode morphology. J Phys Mater 2022;5:014001.

55. Li G, Mao J, Saqib M, Hao R. Operando optoelectrochemical analysis of single zinc dendrites with a reflective nanopore electrode. Chem Asian J 2022;17:e202200824.

56. Mao J, Li G, Saqib M, Xu J, Hao R. Super-resolved dynamics of isolated zinc formation during extremely fast electrochemical deposition/dissolution processes. Chem Sci 2022;13:12782-90.

57. Sasaki Y, Yoshida K, Kawasaki T, Kuwabara A, Ukyo Y, Ikuhara Y. In situ electron microscopy analysis of electrochemical Zn deposition onto an electrode. J Power Sources 2021;481:228831.

58. Li M, Ran L, Knibbe R. Zn electrodeposition by an in situ electrochemical liquid phase transmission electron microscope. J Phys Chem Lett 2021;12:913-8.

59. Britton MM, Bayley PM, Howlett PC, Davenport AJ, Forsyth M. In situ, real-time visualization of electrochemistry using magnetic resonance imaging. J Phys Chem Lett 2013;4:3019-23.

60. Wang T, Kunimoto M, Mori T, et al. Carbonate formation on carbon electrode in rechargeable zinc-air battery revealed by in-situ Raman measurements. J Power Sources 2022;533:231237.

61. Santos F, Abad J, Vila M, Castro GR, Urbina A, Fernández Romero AJ. In situ synchrotron x-ray diffraction study of Zn/Bi2O3 electrodes prior to and during discharge of Zn-air batteries: influence on ZnO deposition. Electrochim Acta 2018;281:133-41.

62. Han X, Zhang T, Chen W, et al. Mn-N4 oxygen reduction electrocatalyst: operando investigation of active sites and high performance in zinc-air battery. Adv Energy Mater 2021;11:2002753.

63. Sun Z, Zhang H, Cao L, et al. Understanding synergistic catalysis on Cu-Se dual atom sites via operando X-ray absorption spectroscopy in oxygen reduction reaction. Angew Chem Int Ed Engl 2023;62:e202217719.

64. Withers PJ, Bouman C, Carmignato S, et al. X-ray computed tomography. Nat Rev Methods Primers 2021;1:18.

65. Schröder D, Bender CL, Arlt T, et al. In operando x-ray tomography for next-generation batteries: a systematic approach to monitor reaction product distribution and transport processes. J Phys D Appl Phys 2016;49:404001.

66. Franke-Lang R, Arlt T, Manke I, Kowal J. X-ray tomography as a powerful method for zinc-air battery research. J Power Sources 2017;370:45-51.

67. Chen B, Zhang H, Xuan J, Offer GJ, Wang H. Seeing is believing: in situ/operando optical microscopy for probing electrochemical energy systems. Adv Mater Technol 2020;5:2000555.

68. Rukari T, Babita A. Transmission electron microscopy-an overview. IRJIPS 2013;1:1-7. Available from: https://www.researchgate.net/publication/332104143_Review_Article_TRANSMISSION_ELECTRON_MICROSCOPY. [Last accessed on 20 Dec 2023]

69. Santhosh Kumar R, Muthu Austeria P, Sagaya Selvam Neethinathan C, et al. Highly mixed high-energy d-orbital states enhance oxygen evolution reactions in spinel catalysts. Appl Surf Sci 2023;641:158469.

70. Braidy N, Béchu A, de Souza Terra JC, Patience GS. Experimental methods in chemical engineering: transmission electron microscopy - TEM. Can J Chem Eng 2020;98:628-41.

71. Sasaki Y, Yoshida K, Kuwabara A, Ikuhara Y. On-chip electrochemical analysis combined with liquid-phase electron microscopy of zinc deposition/dissolution. J Electrochem Soc 2021;168:112511.

72. Mohammadi M, Jerschow A. In situ and operando magnetic resonance imaging of electrochemical cells: a perspective. J Magn Reson 2019;308:106600.

73. Hess C. New advances in using Raman spectroscopy for the characterization of catalysts and catalytic reactions. Chem Soc Rev 2021;50:3519-64.

74. Campion A, Kambhampati P. Surface-enhanced Raman scattering. Chem Soc Rev 1998;27:241-50.

75. Stiles PL, Dieringer JA, Shah NC, Van Duyne RP. Surface-enhanced Raman spectroscopy. Annu Rev Anal Chem 2008;1:601-26.

76. Wei X, Wang X, An Q, Han C, Mai L. Operando X-ray diffraction characterization for understanding the intrinsic electrochemical mechanism in rechargeable battery materials. Small Methods 2017;1:1700083.

77. Bunaciu AA, Udriştioiu EG, Aboul-Enein HY. X-ray diffraction: instrumentation and applications. Crit Rev Anal Chem 2015;45:289-99.

78. Ameh ES. A review of basic crystallography and x-ray diffraction applications. Int J Adv Manuf Technol 2019;105:3289-302.

79. Kumar RS, Mannu P, Prabhakaran S, et al. Trimetallic oxide electrocatalyst for enhanced redox activity in zinc-air batteries evaluated by in situ analysis. Adv Sci 2023;10:2303525.

80. Wu Z, Kong Pang W, Chen L, Johannessen B, Guo Z. In situ synchrotron X-ray absorption spectroscopy studies of anode materials for rechargeable batteries. Batteries Supercaps 2021;4:1547-66.

81. Wang M, Feng Z. Pitfalls in X-ray absorption spectroscopy analysis and interpretation: a practical guide for general users. Curr Opin Electrochem 2021;30:100803.

82. Young NA. The application of synchrotron radiation and in particular X-ray absorption spectroscopy to matrix isolated species. Coord Chem Rev 2014;277-8:224-74.

83. Kerr BV, King HJ, Garibello CF, et al. Characterization of energy materials with X-ray absorption spectroscopy - advantages, challenges, and opportunities. Energy Fuels 2022;36:2369-89.

Chemical Synthesis
ISSN 2769-5247 (Online)

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/