REFERENCES
1. Shirakawa H, Louis EJ, Macdiarmid AG, Chiang CK, Heeger AJ. Synthesis of electrically conducting organic polymers: halogen derivatives of polyacetylene, (CH)x. J Chem Soc Chem Commun 1977:578-80.
2. Chiang CK, Fincher Jr CR, Park YW, et al. Electrical conductivity in doped polyacetylene. Phys Rev Lett 1977;39:1098-101.
3. Shirakawa H. The discovery of polyacetylene film: the dawning of an era of conducting polymers (Nobel lecture). Angew Chem Int Ed 2001;40:2574-80.
4. Heeger AJ. Nobel lecture: semiconducting and metallic polymers: the fourth generation of polymeric materials. Rev Mod Phys 2001;73:681.
5. Chiang CK, Druy MA, Gau SC, et al. Synthesis of highly conducting films of derivatives of polyacetylene, (CH)x. J Am Chem Soc 1978;100:1013-5.
6. Rasmussen SC. Conjugated and conducting organic polymers: the first 150 years. Chempluschem 2020;85:1412-29.
8. Rasmussen SC. Cuprene: a historical curiosity along the path to polyacetylene. Bull Hist Chem 2017;42:63-78. Available from: http://acshist.scs.illinois.edu/awards/OPA%20Papers/2018-Rasmussen.pdf. [Last accessed on 10 Jan 2024]
9. Natta G, Mazzanti G, Corradini P. Stereospecific polymerization of acetylene. Atti Accad Naz Lincei Cl Sci Fis Mat Nat Rend 1958;25:3-12. (in German). Available from: https://www.giulionatta.it/pdf/pubblicazioni/00296.pdf. [Last accessed on 10 Jan 2024]
10. Reppe W, Schweckendiek WJ. Cyclizing polymerization of acetylene. III Benzene, benzene derivatives and hydroaromatic compounds. Justus Liebigs Ann Chem 1948;560:104-16. Available from: https://chemistry-europe.onlinelibrary.wiley.com/doi/10.1002/jlac.19485600104. [Last accessed on 12 Jan 2024]
11. Sondheimer F, Wolovsky R. The synthesis of cycloöctadecanonaene, a new aromatic system. Tetrahedron Lett 1959;1:3-6.
12. Sondheimer F, Gaoni Y. Unsaturated macrocyclic compounds. XV.1 Cyclotetradecaheptaene. J Am Chem Soc 1960;82:5765-6.
15. Biradha K, Santra R. Crystal engineering of topochemical solid state reactions. Chem Soc Rev 2013;42:950-67.
16. Grommet AB, Feller M, Klajn R. Chemical reactivity under nanoconfinement. Nat Nanotechnol 2020;15:256-71.
17. Fu Q, Bao X. Surface chemistry and catalysis confined under two-dimensional materials. Chem Soc Rev 2017;46:1842-74.
18. Chen Z, Guan B, Chen X, et al. Fast and uniform growth of graphene glass using confined-flow chemical vapor deposition and its unique applications. Nano Res 2016;9:3048-55.
20. Tanaka K, Toda F. Organic photoreaction in the solid state. In: Toda F, editor. Organic solid-state reactions. Dordrecht: Springer; 2002. pp. 109-58.
21. Côté AP, Benin AI, Ockwig NW, O’Keeffe M, Matzger AJ, Yaghi OM. Porous, crystalline, covalent organic frameworks. Science 2005;310:1166-70.
22. Diercks CS, Yaghi OM. The atom, the molecule, and the covalent organic framework. Science 2017;355:eaal1585.
23. Colson JW, Dichtel WR. Rationally synthesized two-dimensional polymers. Nature Chem 2013;5:453-65.
24. Zhao Y, Das S, Sekine T, et al. Record ultralarge-pores, low density threedimensional covalent organic framework for controlled drug delivery. Angew Chem Int Ed 2023;62:e202300172.
25. Huang L, Yang J, Asakura Y, Shuai Q, Yamauchi Y. Nanoarchitectonics of hollow covalent organic frameworks: synthesis and applications. ACS Nano 2023;17:8918-34.
26. Yang J, Huang L, You J, Yamauchi Y. Magnetic covalent organic framework composites for wastewater remediation. Small 2023;19:2301044.
27. Liu K, Yang J, Liu J, et al. Robust self-floating covalent organic framework/chitosan aerogels for the efficient removal of sulfamerazine. Chem Eng J 2023;472:144966.
28. Huang L, Yang J, Zhao Y, et al. Monolithic covalent organic frameworks with hierarchical architecture: attractive platform for contaminant remediation. Chem Mater 2023;35:2661-82.
29. Zhang F, Ma X, Dong X, Miao X, Lang X. Inserting acetylene into an olefin-linked covalent organic framework for boosting the selective photocatalytic aerobic oxidation of sulfides. Chem Eng J 2023;451:138802.
30. Huang N, Ding X, Kim J, Ihee H, Jiang D. A photoresponsive smart covalent organic framework. Angew Chem Int Ed 2015;54:8704-7.
31. Acharjya A, Pachfule P, Roeser J, Schmitt FJ, Thomas A. Vinylene-linked covalent organic frameworks by base-catalyzed aldol condensation. Angew Chem Int Ed 2019;58:14865-70.
32. Jadhav T, Fang Y, Liu CH, et al. Transformation between 2D and 3D covalent organic frameworks via reversible [2 + 2] cycloaddition. J Am Chem Soc 2020;142:8862-70.
33. Zhu Y, Shao P, Hu L, et al. Construction of interlayer conjugated links in 2D covalent organic frameworks via topological polymerization. J Am Chem Soc 2021;143:7897-902.
34. Ishii F, Matsunami S, Shibata M, Kakuchi T. Cis-trans isomerization and 13C-NMR chemical shift of polyphenylacetylene. J Polym Sci Part B Polym Phys 1999;37:1657-64.
35. Chan CYK, Tseng NW, Lam JWY, Liu J, Kwok RTK, Tang BZ. Construction of functional macromolecules with well-defined structures by indium-catalyzed three-component polycoupling of alkynes, aldehydes, and amines. Macromolecules 2013;46:3246-56.
36. Terao T, Maeda S, Yamabe T, Akagi K, Shirakawa H. 13C high-resolution NMR study of undoped polyacetylene. Chem Phys Lett 1984;103:347-51.
37. Taniguchi T, Yoshida T, Echizen K, Takayama K, Nishimura T, Maeda K. Facile and versatile synthesis of end-functionalized poly(phenylacetylene)s: a multicomponent catalytic system for well-controlled living polymerization of phenylacetylenes. Angew Chem Int Ed Engl 2020;59:8670-80.
38. Jin YJ, Kim H, Miyata M, et al. Influence of a hydrodynamic environment on chain rigidity, liquid crystallinity, absorptivity, and photoluminescence of hydrogen-bonding-assisted helical poly(phenylacetylene). RSC Adv 2016;6:36661-6.
39. Shi G, Dai X, Xu Q, Shen J, Wan X. Enantioseparation by high-performance liquid chromatography on proline-derived helical polyacetylenes. Polym Chem 2021;12:242-53.
40. Bontapalle S, Varughese S. Understanding the mechanism of ageing and a method to improve the ageing resistance of conducting PEDOT:PSS films. Polym Degrad Stab 2020;171:109025.
41. Li JR, Zhou HC. Bridging-ligand-substitution strategy for the preparation of metal-organic polyhedra. Nature Chem 2010;2:893-8.
42. Li J, Han X, Wang D, et al. A deprotection-free method for high-yield synthesis of graphdiyne powder with in situ formed cuo nanoparticles. Angew Chem Int Ed 2022;134:e202210242.
43. Ma K, Wu J, Wang X, et al. Periodically interrupting bonding behavior to reformat delocalized electronic states of graphdiyne for improved electrocatalytic hydrogen evolution. Angew Chem Int Ed Engl 2022;134:e202211094.
44. Zhuo S, Shi Y, Liu L, et al. Dual-template engineering of triple-layered nanoarray electrode of metal chalcogenides sandwiched with hydrogen-substituted graphdiyne. Nat Commun 2018;9:3132.
45. Goldberg IB, Crowe HR, Newman PR, Heeger AJ, Macdiarmid AG. Electron spin resonance of polyacetylene and AsF5-doped polyacetylene. J Chem Phys 1979;70:1132-6.
46. Bernier P, Rolland M, Galtier M, et al. Electronic properties of non-doped and doped polyacetylene films studied by E.S.R. J Phyique Lett 1979;40:297-301.
47. Bartl A, Doege HG, Froehner J, Lehmann G, Pietrass B. Influence of iodine doping on ESR properties of polyacetylene. Synth Met 1984;10:151-6.
48. Bartl A, Dunsch L, Park YW, Choi ES, Suh DS. Quantum transport in AuCl3 doped polyacetylene studied by ESR. Synth Met 2001;117:21-5.
49. Tang X, Chen Z, Xu Q, et al. Design of photothermal covalent organic frameworks by radical immobilization. CCS Chem 2022;4:2842-53.
50. Komaba K, Goto H. Soliton excitations in liquid crystal polyacetylene. Mol Cryst Liquid Crystals 2020;703:69-78.
51. Zhan X, Yang M, Shen Y, Wan M. Vibration and photoelectron spectroscopies of iodine-doped poly(p-diethynylbenzene). Eur Polym J 2002;38:2349-53.
52. Weber J, Antonietti M, Thomas A. Microporous networks of high-performance polymers: elastic deformations and gas sorption properties. Macromolecules 2008;41:2880-5.
53. Chen D, Chen W, Xing G, Zhang T, Chen L. An upgraded “two-in-one” strategy toward highly crystalline covalent organic frameworks. Chem Eur J 2020;26:8377-81.
55. Seo JM, Noh HJ, Jeong HY, Baek JB. Converting unstable imine-linked network into stable aromatic benzoxazole-linked one via post-oxidative cyclization. J Am Chem Soc 2019;141:11786-90.
56. Smith BJ, Hwang N, Chavez AD, Novotney JL, Dichtel WR. Growth rates and water stability of 2D boronate ester covalent organic frameworks. Chem Commun 2015;51:7532-5.
57. Pachfule P, Acharjya A, Roeser J, et al. Diacetylene functionalized covalent organic framework (COF) for photocatalytic hydrogen generation. J Am Chem Soc 2018;140:1423-7.
58. Mondloch JE, Karagiaridi O, Farha OK, Hupp JT. Activation of metal-organic framework materials. CrystEngComm 2013;15:9258-64.
59. Zhu D, Verduzco R. Ultralow surface tension solvents enable facile COF activation with reduced pore collapse. ACS Appl Mater Interfaces 2020;12:33121-7.
60. Yokozawa T, Ohta Y. Transformation of step-growth polymerization into living chain-growth polymerization. Chem Rev 2016;116:1950-68.
61. Miyatake K, Hlil AR, Hay AS. High molecular weight aromatic polyformals free of macrocyclic oligomers. A condensative chain polymerization reaction. Macromolecules 2001;34:4288-90.
62. Chien JCW. Kinetics of acetylene polymerization and structures of polyacetylene. Polym Eng Sci 1985;25:635-42.
63. Schen MA, Karasz FE, Chien JCW. Kinetics and mechanism of acetylene polymerization. J Polym Sci Polym Chem Ed 1983;21:2787-812.
64. Basescu N, Liu ZX, Moses D, Heeger AJ, Naarmann H, Theophilou N. High electrical conductivity in doped polyacetylene. Nature 1987;327:403-5.
65. Park YW, Heeger AJ, Druy MA, Macdiarmid AG. Electrical transport in doped polyacetylene. J Chem Phys 1980;73:946-57.