REFERENCES
1. Lin Z, Denny SR, Chen JG. Transition metal carbides and nitrides as catalysts for thermochemical reactions. J Catal 2021;404:929-42.
2. Li J, Chen X, Zhu X, Jiang Y, Chang X, Sun S. Two-dimensional transition metal MXene-based gas sensors: a review. Chin Chem Lett 2023:108286.
3. Oyama S. Preparation and catalytic properties of transition metal carbides and nitrides. Catal Today 1992;15:179-200.
4. Pang J, Sun J, Zheng M, Li H, Wang Y, Zhang T. Transition metal carbide catalysts for biomass conversion: a review. Appl Catal B Environ 2019;254:510-22.
5. Dong S, Pu Y, Niu Y, Zhang L, Wang Y, Zhang B. Interstitial carbon in Ni enables high-efficiency hydrogenation of 1,3-butadiene. Acta Phys Chim Sin 2023;39:2301012.
6. He K, Shen R, Hao L, et al. Advances in nanostructured silicon carbide photocatalysts. Acta Phys Chim Sin 2022;38:2201021.
7. Du X, Zhang R, Li D, Hu C, Garcia H. Molybdenum carbide as catalyst in biomass derivatives conversion. J Energy Chem 2022;73:68-87.
8. Yao S, Zhang X, Zhou W, et al. Atomic-layered Au clusters on α-MoC as catalysts for the low-temperature water-gas shift reaction. Science 2017;357:389-93.
9. Dong J, Fu Q, Jiang Z, Mei B, Bao X. Carbide-supported Au catalysts for water-gas shift reactions: a new territory for the strong metal-support interaction effect. J Am Chem Soc 2018;140:13808-16.
10. Lin L, Zhou W, Gao R, et al. Low-temperature hydrogen production from water and methanol using Pt/α-MoC catalysts. Nature 2017;544:80-3.
11. Ma Y, Guan G, Hao X, Cao J, Abudula A. Molybdenum carbide as alternative catalyst for hydrogen production - a review. Renew Sust Energ Rev 2017;75:1101-29.
12. Hou R, Chang K, Chen JG, Wang T. Replacing precious metals with carbide catalysts for hydrogenation reactions. Top Catal 2015;58:240-6.
13. Frühberger B, Chen JG. Reaction of ethylene with clean and carbide-modified Mo(110): converting surface reactivities of molybdenum to Pt-group metals. J Am Chem Soc 1996;118:11599-609.
14. Shi Y, Yang Y, Li Y, Jiao H. Activation mechanisms of H2, O2, H2O, CO2, CO, CH4 and C2Hx on metallic Mo2C(001) as well as Mo/C terminated Mo2C(101) from density functional theory computations. Appl Catal A Gen 2016;524:223-36.
15. Du X, Liu J, Li D, et al. Structural and electronic effects boosting Ni-doped Mo2C catalyst toward high-efficiency C-O/C-C bonds cleavage. J Energ Chem 2022;75:109-16.
16. Wan C, Regmi YN, Leonard BM. Multiple phases of molybdenum carbide as electrocatalysts for the hydrogen evolution reaction. Angew Chem Int Ed Engl 2014;53:6407-10.
17. Lian JH, Tan HY, Guo CQ, et al. Unravelling the role of ceria in improving the stability of Mo2C- based catalysts for the steam reforming of dimethyl ether. Catal Sci Technol 2021;11:5570-8.
18. Guo X, Wang C, Wang W, et al. Vacancy manipulating of molybdenum carbide MXenes to enhance Faraday reaction for high performance lithium-ion batteries. Nano Res Energy 2022;1:e9120026.
19. Yang Q, Qiu R, Ma X, Hou R, Sun K. Surface reconstruction and the effect of Ni-modification on the selective hydrogenation of 1,3-butadiene over Mo2C-based catalysts. Catal Sci Technol 2020;10:3670-80.
20. Yue S, Xu D, Sheng Y, et al. One-step synthesis of mesoporous alumina-supported molybdenum carbide with enhanced activity for thiophene hydrodesulfurization. J Environ Chem Eng 2021;9:105693.
21. Dongil AB, Zhang Q, Pastor-pérez L, Ramírez-reina T, Guerrero-ruiz A, Rodríguez-ramos I. Effect of Cu and Cs in the β-Mo2C system for CO2 hydrogenation to methanol. Catalysts 2020;10:1213.
22. Rocha AS, Souza LA, Oliveira Jr RR, Rocha AB, da Silva VT. Hydrodeoxygenation of acrylic acid using Mo2C/Al2O3. Appl Catal A Gen 2017;531:69-78.
23. Ye X, Ma J, Yu W, et al. Construction of bifunctional single-atom catalysts on the optimized β-Mo2C surface for highly selective hydrogenation of CO2 into ethanol. J Energy Chem 2022;67:184-92.
24. Cao J, Ma Y, Guan G, et al. Reaction intermediate species during the steam reforming of methanol over metal modified molybdenum carbide catalysts. Appl Catal B Environ 2016;189:12-8.
25. Wang G, Schaidle JA, Katz MB, Li Y, Pan X, Thompson LT. Alumina supported Pt-Mo2C catalysts for the water-gas shift reaction. J Catal 2013;304:92-9.
26. Zhang X, Liu Y, Zhang M, et al. Synergy between β-Mo2C nanorods and non-thermal plasma for selective CO2 reduction to CO. Chem 2020;6:3312-28.
27. Ma FX, Wu HB, Xia BY, Xu CY, Lou XW. Hierarchical β-Mo2C nanotubes organized by ultrathin nanosheets as a highly efficient electrocatalyst for hydrogen production. Angew Chem Int Ed 2015;54:15395-9.
28. Murugappan K, Anderson EM, Teschner D, Jones TE, Skorupska K, Román-leshkov Y. Operando NAP-XPS unveils differences in MoO3 and Mo2C during hydrodeoxygenation. Nat Catal 2018;1:960-7.
29. Vitale G, Guzmán H, Frauwallner ML, Scott CE, Pereira-almao P. Synthesis of nanocrystalline molybdenum carbide materials and their characterization. Catal Today 2015;250:123-33.
30. Vitale G, Frauwallner M, Hernandez E, Scott C, Pereira-almao P. Low temperature synthesis of cubic molybdenum carbide catalysts via pressure induced crystallographic orientation of MoO3 precursor. Appl Catal A Gen 2011;400:221-9.
31. Chang H, Zhang G, Chou K. Topochemical synthesis of one-dimensional Mo2C nanobelts. Ceram Int 2020;46:12891-6.
32. Wang L, Zhang G, Chou K. Preparation of Mo2C by reducing ultrafine spherical β-MoO3 powders with CO or CO-CO2 gases. J Aust Ceram Soc 2018;54:97-107.
33. Li S, Kim WB, Lee JS. Effect of the reactive gas on the solid-state transformation of molybdenum trioxide to carbides and nitrides. Chem Mater 1998;10:1853-62.
34. Xiao T, York APE, Coleman KS, et al. Effect of carburising agent on the structure of molybdenum carbides. J Mater Chem 2001;11:3094-8.
35. Kugler EL, Clark CH, Wright JH, et al. Preparation, interconversion and characterization of nanometer-sized molybdenum carbide catalysts. Top Catal 2006;39:257-62.
36. Jung KT, Kim WB, Rhee CH, Lee JS. Effects of transition metal addition on the solid-state transformation of molybdenum trioxide to molybdenum carbides. Chem Mater 2004;16:307-14.
37. Alaba PA, Abbas A, Huang J, Daud WMAW. Molybdenum carbide nanoparticle: understanding the surface properties and reaction mechanism for energy production towards a sustainable future. Renew Sust Energ Rev 2018;91:287-300.
38. Wang W, Han Y, Li Z, Liu X, Xu S. Phase equilibrium diagram and phase transformation for preparation of Mo2C: thermodynamic study and experimental verification. Ceram Int 2020;46:755-62.
39. Zhu L, Zhao Y, Yang W, Hsu H, Peng P, Li F. Low-temperature selective synthesis of metastable α-MoC with electrochemical properties: electrochemical co-reduction of CO2 and MoO3 in molten salts. Chinese Chem Lett 2023:108583.
40. Koós Á, Oszkó A, Solymosi F. A photoelectron spectroscopic study of the carburization of MoO3. Appl Surf Sci 2007;253:3022-8.
41. Cetinkaya S, Eroglu S. Thermodynamic analysis and synthesis of porous Mo2C sponge by vapor-phase condensation and in situ carburization of MoO3. J Alloys Compd 2010;489:36-41.
42. Dang J, Zhang G, Wang L, Chou K, Pistorius PC. Study on reduction of MoO2 powders with CO to produce Mo2C. J Am Ceram Soc 2016;99:819-24.
43. Hanif A, Xiao T, York APE, Sloan J, Green MLH. Study on the structure and formation mechanism of molybdenum carbides. Chem Mater 2002;14:1009-15.
44. Bkour Q, Cuba-torres CM, Marin-flores OG, et al. Mechanistic study of the reduction of MoO2 to Mo2C under methane pulse conditions. J Mater Sci 2018;53:12816-27.
45. Wang Y, Niu Y, Gao T, Liu S, Zhang B. Assessing the effect of the electron-beam irradiation on Pd/Ga2O3 catalyst under ambient pressure. ChemCatChem 2020;12:4765-9.
46. Niu Y, Liu X, Wang Y, et al. Visualizing formation of intermetallic PdZn in a palladium/zinc oxide catalyst: interfacial fertilization by PdHx. Angew Chem Int Ed Engl 2019;58:4232-7.
47. Li C, Liu B, Jiang N, Ding Y. Elucidating the charge-transfer and Li-ion-migration mechanisms in commercial lithium-ion batteries with advanced electron microscopy. Nano Res Energy 2022;1:e9120031.
48. Ma P, Li A, Wang L, Zheng K. Investigation of deoxidation process of MoO3 using environmental TEM. Materials 2021;15:56.
49. Lin Z, Cai L, Lu W, Chai Y. Phase and facet control of molybdenum carbide nanosheet observed by in situ TEM. Small 2017;13:1700051.
50. Fei L, Ng SM, Lu W, et al. Atomic-scale mechanism on nucleation and growth of Mo2C nanoparticles revealed by in situ transmission electron microscopy. Nano Lett 2016;16:7875-81.
51. Yang S, Wang Z, Hu Y, et al. Highly responsive room-temperature hydrogen sensing of α-MoO3 nanoribbon membranes. ACS Appl Mater Interfaces 2015;7:9247-53.
52. Bonnet F, Ropital F, Berthier Y, Marcus P. Filamentous carbon formation caused by catalytic metal particles from iron oxide. Mater Corros 2003;54:870-80.
53. Zou Z, Fu L, Song X, Zhang Y, Liu Z. Carbide-forming groups IVB-VIB metals: a new territory in the periodic table for CVD growth of graphene. Nano Lett 2014;14:3832-9.
54. Hu B, Mai L, Chen W, Yang F. From MoO3 nanobelts to MoO2 nanorods: structure transformation and electrical transport. ACS Nano 2009;3:478-82.
55. Guo X, Maier J. Grain boundary blocking effect in zirconia: a schottky barrier analysis. J Electrochem Soc 2001;148:E121.