REFERENCES
1. Gütlich P, Gaspar AB, Garcia Y. Spin state switching in iron coordination compounds. Beilstein J Org Chem 2013;9:342-91.
2. Gütlich P, Goodwin HA. Gütlich P, Goodwin HA. Spin crossover in transition metal compounds III. In: Topics in current chemistry. 2004.
3. Garcia Y, Moscovici J, Michalowicz A, et al. A spin transition molecular material with a wide bistability domain. Chem Eur J 2002;8:4992-5000.
4. Garcia Y, Goodwin HA. Garcia Y, Gütlich P. Thermal spin crossover in Mn(II), Mn(III), Cr(II) and Co(III) coordination compounds. In: Spin crossover in transition metal compounds II. Berlin, Heidelberg: Springer; 2004. p. 49-62.
5. Gütlich P, Gaspar AB, Garcia Y, Ksenofontov V. Pressure effect studies in molecular magnetism. C R Chim 2007;10:21-36.
6. Coronado E, Galán-mascarós J, Monrabal-capilla M, García-martínez J, Pardo-ibáñez P. Bistable spin-crossover nanoparticles showing magnetic thermal hysteresis near room temperature. Adv Mater 2007;19:1359-61.
7. Hauser A. Spin‐crossover materials. Properties and applications. Edited by Malcolm A. Halcrow. Angew Chem Int Ed 2013;53:10419.
8. Boukheddaden K, Linares J, Tanasa R, Chong C. Theoretical investigations on an axial next nearest neighbour Ising-like model for spin crossover solids: one- and two-step spin transitions. J Phys Condens Matter 2007;19:106201.
9. Rotaru A, Linares J, Varret F, et al. Pressure effect investigated with first-order reversal-curve method on the spin-transition compounds[
10. Faivre C, Bellet D, Dolino G. In situ X-ray diffraction investigation of porous silicon strains induced by the freezing of a confined organic fluid. Eur Phys J B 2000;16:447-54.
11. Rotaru A, Dîrtu MM, Enachescu C, et al. Calorimetric measurements of diluted spin crossover complexes[
12. Chastanet G, Gaspar AB, Real JA, Létard JF. Photo-switching spin pairs - synergy between LIESST effect and magnetic interaction in an iron(ⅱ) binuclear spin-crossover compoundDedicated to the memory of Olivier Kahn. Chem Commun 2001:819-20.
13. Gütlich P, Hauser A. Thermal and light-induced spin crossover in iron(Ⅱ) complexes. Coord Chem Rev 1990;97:1-22.
14. Linares J, Jureschi C, Boukheddaden K. Surface effects leading to unusual size dependence of the thermal hysteresis behavior in spin-crossover nanoparticles. Magnetochemistry 2016;2:24.
15. Kroeber J, Audiere J, Claude R, et al. Spin transitions and thermal hysteresis in the molecular-based materials[Fe(Htrz)2(trz)](BF4) and[Fe(Htrz)3](BF4)2.cntdot.H2O (Htrz = 1, 2, 4-4H-triazole; trz = 1, 2, 4-triazolato). Chem Mater 1994;6:1404-12.
16. Constant-Machado H, Stancu A, Linares J, Varret F. Thermal hysteresis loops in spin-crossover compounds analyzed in terms of classical Preisach model. IEEE Trans Magn 1998;34:2213-9.
17. Kahn O, Martinez CJ. Spin-Transition polymers: from molecular materials toward memory devices. Science 1998;279:44-8.
18. Chiruta D, Jureschi C, Linares J, Garcia Y, Rotaru A. Lattice architecture effect on the cooperativity of spin transition coordination polymers. J Appl Phys 2014;115:053523.
19. Enachescu C, Tanasa R, Stancu A, Codjovi E, Linares J, Varret F. FORC method applied to the thermal hysteresis of spin transition solids: first approach of static and kinetic properties. Physica B Condensed Matter 2004;343:15-9.
20. Enachescu C, -Machado H, Menendez N, et al. Static and light induced hysteresis in spin-crossover compounds: experimental data and application of Preisach-type models. Physica B Condensed Matter 2001;306:155-60.
21. Linares J, Codjovi E, Garcia Y. Pressure and temperature spin crossover sensors with optical detection. Sensors 2012;12:4479-92.
22. Boukheddaden K, Ritti MH, Bouchez G, et al. Quantitative contact pressure sensor based on spin crossover mechanism for civil security applications. J Phys Chem C 2018;122:7597-604.
23. Linares J, Allal SE, Dahoo PR, Garcia Y. Numerical simulation of a device with two spin crossover complexes: application for temperature and pressure sensors. J Phys Conf Ser 2017;936:012048.
24. Jureschi CM, Linares J, Boulmaali A, Dahoo PR, Rotaru A, Garcia Y. Pressure and temperature sensors using two spin crossover materials. Sensors 2016;16:187.
25. Sun L, Ndiaye M, El Islam Belmouri N, et al. Spin crossover coordination polymers with pyridine-like modification through selective guest molecules. Cryst Growth Des 2022;22:7555-63.
26. Sun L, Belmouri NEI, Ndiaye M, et al. Thermal-driven guest-induced spin crossover behavior in 3D Fe(Ⅱ)-based porous coordination polymers. Cryst Growth Des 2023;23:3402-11.
27. Benaicha B, Van Do K, Yangui A, et al. Interplay between spin-crossover and luminescence in a multifunctional single crystal iron(ⅱ) complex: towards a new generation of molecular sensors. Chem Sci 2019;10:6791-8.
28. Titos‐Padilla S, Herrera JM, Chen X, Delgado JJ, Colacio E. Bifunctional hybrid SiO2 nanoparticles showing synergy between core spin crossover and shell luminescence properties. Angew Chem Int Ed Engl 2011;123:3348-51.
29. Palluel M, Tran NM, Daro N, et al. The interplay between surface plasmon resonance and switching properties in Gold@Spin crossover nanocomposites. Adv Funct Mater 2020;30:2000447.
30. Wajnflasz J, Pick R. Transitions "low spin" - "high spin" dans les complexes de
31. Bousseksou A, Nasser J, Linares J, Boukheddaden K, Varret F. Ising-like model for the two-step spin-crossover. J Phys I France 1992;2:1381-403.
32. Linares J, Spiering H, Varret F. Analytical solution of 1D Ising-like systems modified by weak long range interaction: application to spin crossover compounds. Eur Phys J B 1999;10:271-5.
33. Varret F, Salunke SA, Boukheddaden K, et al. The Ising-like model applied to switchable inorganic solids: discussion of the static properties. C R Chim 2003;6:385-93.
34. Chiruta D, Linares J, Dimian M, Garcia Y. Size effect and role of short‐ and long‐range interactions on 1D spin‐crossover systems within the framework of an ising‐like model. Eur J Inorg Chem 2013;2013:951-7.
35. Ekanayaka TK, Kurz H, Dale AS, et al. Probing the unpaired Fe spins across the spin crossover of a coordination polymer. Mater Adv 2021;2:760-8.
36. Nishino M, Enachescu C, Miyashita S, Boukheddaden K, Varret F. Intrinsic effects of the boundary condition on switching processes in effective long-range interactions originating from local structural change. Phys Rev B 2010;82:020409.
37. Slimani A, Boukheddaden K, Varret F, Oubouchou H, Nishino M, Miyashita S. Microscopic spin-distortion model for switchable molecular solids: spatiotemporal study of the deformation field and local stress at the thermal spin transition. Phys Rev B 2013;87:014111.
38. Nishino M, Singh Y, Boukheddaden K, Miyashita S. Tutorial on elastic interaction models for multistep spin-crossover transitions. J Appl Phys 2021;130:141102.
39. Singh Y, Oubouchou H, Nishino M, Miyashita S, Boukheddaden K. Elastic-frustration-driven unusual magnetoelastic properties in a switchable core-shell spin-crossover nanostructure. Phys Rev B 2020;101:054105.
40. Jiang X, Hao G, Wang X, et al. Tunable spin-state bistability in a spin crossover molecular complex. J Phys Condens Matter 2019;31:315401.
41. Yazdani S, Phillips J, Ekanayaka TK, Cheng R, Dowben PA. The influence of the substrate on the functionality of spin crossover molecular materials. Molecules 2023;28:3735.
42. Pauli W. Zur Frage der Zuordnung der Komplexstrukturterme in starken und in schwachen äußeren Feldern. Z Physik 1923;20:371-87.
44. Onsager L. Crystal Statistics. I. A two-dimensional model with an order-disorder transition. Phys Rev 1944;65:117-49.
46. Katsura S, Takizawa M. Bethe lattice and the bethe approximation. Prog Theor Phys 1974;51:82-98.
47. Constant-machado H, Linares J, Varret F, et al. Dilution effects in a spin crossover system, modelled in terms of direct and indirect intermolecular interactions. J Phys I France 1996;6:1203-16.
48. Zhao Q, Xue JP, Liu ZK, Yao ZS, Tao J. Spin-crossover iron(ii) long-chain complex with slow spin equilibrium at low temperatures. Dalton Trans 2021;50:11106-12.
49. Fürmeyer F, Carrella LM, Ksenofontov V, Möller A, Rentschler E. Phase trapping in multistep spin crossover compound. Inorg Chem 2020;59:2843-52.
50. Shteto I, Linares J, Varret F. Monte Carlo entropic sampling for the study of metastable states and relaxation paths. Phys Rev E 1997;56:5128-37.
51. Linares J, Enachescu C, Boukheddaden K, Varret F. Monte Carlo entropic sampling applied to spin crossover solids: the squareness of the thermal hysteresis loop. Polyhedron 2003;22:2453-6.
52. Chiruta D, Linares J, Dahoo PR, Dimian M. Analysis of long-range interaction effects on phase transitions in two-step spin-crossover chains by using Ising-type systems and Monte Carlo entropic sampling technique. J Appl Phys 2012;112:074906.
53. Cazelles C, Linares J, Ndiaye M, Dahoo P, Boukheddaden K. Hexagonal-shaped spin crossover nanoparticles studied by ising-like model solved by local mean field approximation. Magnetochemistry 2021;7:69.