REFERENCES
1. Chang C. The conversion of methanol and other O-compounds to hydrocarbons over zeolite catalysts. J Catal 1977;47:249-59.
2. Olsbye U, Svelle S, Bjørgen M, et al. Conversion of methanol to hydrocarbons: how zeolite cavity and pore size controls product selectivity. Angew Chem Int Ed Engl 2012;51:5810-31.
3. Tian P, Wei Y, Ye M, Liu Z. Methanol to Olefins (MTO): from fundamentals to commercialization. ACS Catal 2015;5:1922-38.
4. Bjorgen M, Svelle S, Joensen F, et al. Conversion of methanol to hydrocarbons over zeolite H-ZSM-5: On the origin of the olefinic species. J Catal 2007;249:195-207.
5. Ilias S, Bhan A. Mechanism of the catalytic conversion of methanol to hydrocarbons. ACS Catal 2013;3:18-31.
6. Sun X, Mueller S, Liu Y, et al. On reaction pathways in the conversion of methanol to hydrocarbons on HZSM-5. J Catal 2014;317:185-97.
7. Yarulina I, Chowdhury AD, Meirer F, Weckhuysen BM, Gascon J. Recent trends and fundamental insights in the methanol-to-hydrocarbons process. Nat Catal 2018;1:398-411.
8. Lin S, Zhi Y, Chen W, et al. Molecular routes of dynamic autocatalysis for methanol-to-hydrocarbons reaction. J Am Chem Soc 2021;143:12038-52.
9. Erichsen M, Svelle S, Olsbye U. H-SAPO-5 as methanol-to-olefins (MTO) model catalyst: Towards elucidating the effects of acid strength. J Catal 2013;298:94-101.
10. Liu Z, Huang J. Fundamentals of the catalytic conversion of methanol to hydrocarbons. Chem Synth 2022;2:21.
11. Zhang L, Liu N, Dai C, et al. Recent advances in shape selectivity of MFI zeolite and its effect on the catalytic performance. Chem Synth 2023;3:2.
12. Sullivan RF, Egan CJ, Langlois GE, Sieg RP. A new reaction that occurs in the hydrocracking of certain aromatic hydrocarbons. J Am Chem Soc 1961;83:1156-60.
13. Mole T, Bett G, Seddon D. Conversion of methanol to hydrocarbons over ZSM-5 zeolite: An examination of the role of aromatic hydrocarbons using 13carbon- and deuterium-labeled feeds. J Catal 1983;84:435-45.
14. Mole T, Whiteside JA, Seddon D. Aromatic co-catalysis of methanol conversion over zeolite catalysts. J Catal 1983;82:261-6.
15. Sassi A, Wildman MA, Ahn HJ, Prasad P, Nicholas JB, Haw JF. Methylbenzene chemistry on zeolite HBeta: multiple insights into methanol-to-olefin catalysis. J Phys Chem B 2002;106:2294-303.
16. Sassi A, Wildman MA, Haw JF. Reactions of butylbenzene isomers on zeolite HBeta: methanol-to-olefins hydrocarbon pool chemistry and secondary reactions of olefins. J Phys Chem B 2002;106:8768-73.
17. Wang S, Chen Y, Wei Z, et al. Polymethylbenzene or alkene cycle? Theoretical study on their contribution to the process of methanol to olefins over H-ZSM-5 zeolite. . J Phys Chem C 2015;119:28482-98.
18. Ilias S, Bhan A. The mechanism of aromatic dealkylation in methanol-to-hydrocarbons conversion on H-ZSM-5: What are the aromatic precursors to light olefins? J Catal 2014;311:6-16.
19. Song W, Fu H, Haw JF. Supramolecular origins of product selectivity for methanol-to-olefin catalysis on HSAPO-34. J Am Chem Soc 2001;123:4749-54.
20. Wang N, Zhi Y, Wei Y, et al. Molecular elucidating of an unusual growth mechanism for polycyclic aromatic hydrocarbons in confined space. Nat Commun 2020;11:1079-90.
21. Haw JF, Song W, Marcus DM, Nicholas JB. The mechanism of methanol to hydrocarbon catalysis. Acc Chem Res 2003;36:317-26.
22. Bjørgen M, Joensen F, Lillerud K, Olsbye U, Svelle S. The mechanisms of ethene and propene formation from methanol over high silica H-ZSM-5 and H-beta. Catal Today 2009;142:90-7.
23. Shen Y, Le TT, Fu D, et al. Deconvoluting the competing effects of zeolite framework topology and diffusion path length on methanol to hydrocarbons reaction. ACS Catal 2018;8:11042-53.
24. Wang S, Wang P, Qin Z, et al. Relation of catalytic performance to the aluminum siting of acidic zeolites in the conversion of methanol to olefins, viewed via a comparison between ZSM-5 and ZSM-11. ACS Catal 2018;8:5485-505.
25. Ding J, Zhang Z, Meng C, Zhao G, Liu Y, Lu Y. From nano- to macro-engineering of ZSM-11 onto thin-felt stainless-steel-fiber: Steam-assisted crystallization synthesis and methanol-to-propylene performance. Catalysis Today 2020;347:10-7.
26. Dyballa M, Becker P, Trefz D, et al. Parameters influencing the selectivity to propene in the MTO conversion on 10-ring zeolites: directly synthesized zeolites ZSM-5, ZSM-11, and ZSM-22. Appl Catal A 2016;510:233-43.
27. Wang S, Li S, Zhang L, et al. Insight into the effect of incorporation of boron into ZSM-11 on its catalytic performance for conversion of methanol to olefins. Catal Sci Technol 2017;7:4766-79.
28. Wang S, Zhang L, Li S, et al. Tuning the siting of aluminum in ZSM-11 zeolite and regulating its catalytic performance in the conversion of methanol to olefins. J Catal 2019;377:81-97.
29. Yuan K, Jia X, Wang S, et al. Regulating the distribution of acid sites in ZSM-11 zeolite with different halogen anions to enhance its catalytic performance in the conversion of methanol to olefins. Microporous Mesoporous Mater 2022;341:112051.
30. Liu Z, Dong X, Zhu Y, et al. Investigating the influence of mesoporosity in zeolite beta on its catalytic performance for the conversion of methanol to hydrocarbons. ACS Catal 2015;5:5837-45.
31. Dai W, Wu G, Li L, Guan N, Hunger M. Mechanisms of the deactivation of SAPO-34 materials with different crystal sizes applied as MTO catalysts. ACS Catal 2013;3:588-96.
32. Zhu X, Hofmann JP, Mezari B, et al. Trimodal porous hierarchical SSZ-13 zeolite with improved catalytic performance in the methanol-to-olefins reaction. ACS Catal 2016;6:2163-77.
33. Verboekend D, Chabaneix AM, Thomas K, Gilson J, Pérez-ramírez J. Mesoporous ZSM-22 zeolite obtained by desilication: peculiarities associated with crystal morphology and aluminium distribution. Cryst Eng Comm 2011;13:3408-16.
34. Selzer C, Biemelt T, Werner A, Kaskel S. Hierarchical zeolite ZSM-58 as shape selective catalyst for methanol-to-olefins reaction. Microporous Mesoporous Mater 2018;261:51-7.
35. Madeira F, Ben Tayeb K, Pinard L, Vezin H, Maury S, Cadran N. Ethanol transformation into hydrocarbons on ZSM-5 zeolites: influence of Si/Al ratio on catalytic performances and deactivation rate. Study of the radical species role. Appl Catal A 2012;443-444:171-80.
36. Corma A, Fornés V, Forni L, Márquez F, Martı́nez-triguero J, Moscotti D. 2,6-Di-Tert-Butyl-Pyridine as a probe molecule to measure external acidity of zeolites. J Catal 1998;179:451-8.
37. Góra-marek K, Tarach K, Choi M. 2,6-Di- tert- butylpyridine sorption approach to quantify the external acidity in hierarchical zeolites. J Phys Chem C 2014;118:12266-74.
38. Fan S, Wang H, He S, et al. Formation and evolution of methylcyclohexene in the initial period of methanol to olefins over H-ZSM-5. ACS Catal 2022;12:12477-87.
39. Liang T, Chen J, Qin Z, et al. Conversion of methanol to olefins over H-ZSM-5 zeolite: reaction pathway is related to the framework aluminum siting. ACS Catal 2016;6:7311-25.
40. Xue Y, Li J, Wang S, et al. Co-reaction of methanol with butene over a high-silica H-ZSM-5 catalyst. J Catal 2018;367:315-25.
41. Price GL, Iglesia E. Matrix method for correction of mass spectra in deuterium-exchange applications. Ind Eng Chem Res 1989;28:839-44.
42. Vjunov A, Fulton JL, Huthwelker T, et al. Quantitatively probing the Al distribution in zeolites. J Am Chem Soc 2014;136:8296-306.
43. Dedecek J, Lucero MJ, Li C, et al. Complex analysis of the aluminum siting in the framework of silicon-rich zeolites. A case study on ferrierites. J Phys Chem C 2011;115:11056-64.
44. Lin LF, Zhao SF, Zhang DW, Fan H, Liu YM, He MY. Acid strength controlled reaction pathways for the catalytic cracking of 1-Pentene to propene over ZSM-5. ACS Catal 2015;5:4048-59.
45. Khare R, Millar D, Bhan A. A mechanistic basis for the effects of crystallite size on light olefin selectivity in methanol-to-hydrocarbons conversion on MFI. J Catal 2015;321:23-31.
46. Wang C, Wang Q, Xu J, et al. Direct detection of supramolecular reaction centers in the methanol-to-olefins conversion over zeolite H-ZSM-5 by 13C-27Al solid-state NMR spectroscopy. Angew Chem Int Ed Engl 2016;55:2507-11.
47. Park JW, Kim SJ, Seo M, Kim SY, Sugi Y, Seo G. Product selectivity and catalytic deactivation of MOR zeolites with different acid site densities in methanol-to-olefin (MTO) reactions. Appl Catal A 2008;349:76-85.
48. Wang J, Wei Y, Li J, et al. Direct observation of methylcyclopentenyl cations (MCP+) and olefin generation in methanol conversion over TON zeolite. Catal Sci Technol 2016;6:89-97.