REFERENCES

1. Liu X, Dai L. Carbon-based metal-free catalysts. Nat Rev Mater 2016:1.

2. Su DS, Wen G, Wu S, Peng F, Schlögl R. Carbocatalysis in liquid-phase reactions. Angew Chem Int Ed Engl 2017;56:936-64.

3. Li H, Li C, Wang Y, et al. Selenium confined in ZIF-8 derived porous carbon@MWCNTs 3D networks: tailoring reaction kinetics for high performance lithium-selenium batteries. Chem Synth 2022;2:8.

4. Li S, Gu Q, Cao N, et al. Defect enriched N-doped carbon nanoflakes as robust carbocatalysts for H2S selective oxidation. J Mater Chem A 2020;8:8892-902.

5. Xu C, Gu Q, Li S, et al. Heteroatom-doped monolithic carbocatalysts with improved sulfur selectivity and impurity tolerance for H2S selective oxidation. ACS Catal 2021;11:8591-604.

6. Xu C, Chen J, Li S, et al. N-doped honeycomb-like porous carbon derived from biomass as an efficient carbocatalyst for H2S selective oxidation. J Hazard Mater 2021;403:123806.

7. Jia Y, Zhang L, Zhuang L, et al. Identification of active sites for acidic oxygen reduction on carbon catalysts with and without nitrogen doping. Nat Catal 2019;2:688-95.

8. Yin Y, Kang X, Han B. Two-dimensional materials: synthesis and applications in the electro-reduction of carbon dioxide. Chem Synth 2022;2:19.

9. Wu Q, Jia Y, Liu Q, et al. Ultra-dense carbon defects as highly active sites for oxygen reduction catalysis. Chem 2022;8:2715-33.

10. Navalón S, Dhakshinamoorthy A, Álvaro M, García H. Diamond nanoparticles in heterogeneous catalysis. Chem Mater 2020;32:4116-43.

11. Lin Y, Liu Z, Niu Y, et al. Highly efficient metal-free nitrogen-doped nanocarbons with unexpected active sites for aerobic catalytic reactions. ACS Nano 2019;13:13995-4004.

12. Feng L, Ali S, Xu C, et al. Assessing the nature of active sites on nanodiamonds as metal-free catalysts for the EB-to-ST direct dehydrogenation using a catalytic approach. ACS Catal 2022;12:6119-31.

13. Crane MJ, Petrone A, Beck RA, et al. High-pressure, high-temperature molecular doping of nanodiamond. Sci Adv 2019;5:eaau6073.

14. Huang F, Deng Y, Chen Y, et al. Atomically dispersed Pd on nanodiamond/graphene hybrid for selective hydrogenation of acetylene. J Am Chem Soc 2018;140:13142-6.

15. Liu D, Li X, Chen S, et al. Atomically dispersed platinum supported on curved carbon supports for efficient electrocatalytic hydrogen evolution. Nat Energy 2019;4:512-8.

16. Mochalin VN, Shenderova O, Ho D, Gogotsi Y. The properties and applications of nanodiamonds. Nat Nanotechnol 2011;7:11-23.

17. Liu Y, Chen S, Quan X, Yu H. Efficient electrochemical reduction of carbon dioxide to acetate on nitrogen-doped nanodiamond. J Am Chem Soc 2015;137:11631-6.

18. Lin Y, Wu KT, Yu L, Heumann S, Su DS. Efficient and highly selective solvent-free oxidation of primary alcohols to aldehydes using bucky nanodiamond. ChemSusChem 2017;10:3497-505.

19. Lin Y, Li B, Feng Z, Kim YA, Endo M, Su DS. Efficient metal-free catalytic reaction pathway for selective oxidation of substituted phenols. ACS Catal 2015;5:5921-6.

20. Lin Y, Su D. Fabrication of nitrogen-modified annealed nanodiamond with improved catalytic activity. ACS Nano 2014;8:7823-33.

21. Duan X, Su C, Zhou L, et al. Surface controlled generation of reactive radicals from persulfate by carbocatalysis on nanodiamonds. Applied Catalysis B: Environmental 2016;194:7-15.

22. Lenarda A, Wirtanen T, Helaja J. Carbon Materials as catalytic tools for oxidative dehydrogenations and couplings in liquid phase. Synthesis 2023;55:45-61.

23. Chen YX, Qian LF, Zhang W, Han B. Efficient aerobic oxidative synthesis of 2-substituted benzoxazoles, benzothiazoles, and benzimidazoles catalyzed by 4-methoxy-TEMPO. Angew Chem Int Ed Engl 2008;47:9330-3.

24. Blacker AJ, Farah MM, Hall MI, Marsden SP, Saidi O, Williams JM. Synthesis of benzazoles by hydrogen-transfer catalysis. Org Lett 2009;11:2039-42.

25. Yu J, Xu J, Lu M. Copper-catalyzed highly efficient aerobic oxidative synthesis of benzimidazoles, benzoxazoles and benzothiazoles from aromatic alcohols under solvent-free conditions in open air at room temperature: aerobic oxidative synthesis of benzimidazoles, benzoxazoles and benzothiazoles. Appl Organometal Chem 2013; doi: 10.1002/aoc.3039.

26. Reddy MB, Nizam A, Pasha MA. Zn(OAc)2·2H2O-catalyzed, simple, and clean procedure for the synthesis of 2-substituted benzoxazoles using a grindstone method. Synthetic Commun 2011;41:1838-42.

27. Tang L, Guo X, Yang Y, Zha Z, Wang Z. Gold nanoparticles supported on titanium dioxide: an efficient catalyst for highly selective synthesis of benzoxazoles and benzimidazoles. Chem Commun 2014;50:6145-8.

28. Yoo W, Yuan H, Miyamura H, Kobayashi S. Facile preparation of 2-substituted benzoxazoles and benzothiazoles via aerobic oxidation of phenolic and thiophenolic imines catalyzed by polymer-incarcerated platinum nanoclusters. Adv Synth Catal 2011;353:3085-9.

29. Yu C, Guo X, Xi Z, et al. AgPd nanoparticles deposited on WO(2.72) nanorods as an efficient catalyst for one-pot conversion of nitrophenol/nitroacetophenone into benzoxazole/quinazoline. J Am Chem Soc 2017;139:5712-5.

30. Duan X, Sun H, Wang S. Metal-free carbocatalysis in advanced oxidation reactions. Acc Chem Res 2018;51:678-87.

31. Navalon, A. Dhakshinamoorthy, M. Alvaro, H. Garcia. Carbocatalysis by graphene-based materials. Chem Rev 2014;114:6179-6212.

32. Hu F, Patel M, Luo F, et al. Graphene-catalyzed direct friedel-crafts alkylation reactions: mechanism, selectivity, and synthetic utility. J Am Chem Soc 2015;137:14473-80.

33. Yang H, Cui X, Dai X, Deng Y, Shi F. Carbon-catalysed reductive hydrogen atom transfer reactions. Nat Commun 2015;6:6478.

34. Zhang J, Liu X, Blume R, Zhang A, Schlögl R, Su DS. Surface-modified carbon nanotubes catalyze oxidative dehydrogenation of n-butane. Science 2008;322:73-7.

35. Kawashita Y, Nakamichi N, Kawabata H, Hayashi M. Direct and practical synthesis of 2-arylbenzoxazoles promoted by activated carbon. Org Lett 2003;5:3713-5.

36. Frank B, Morassutto M, Schomäcker R, Schlögl R, Su D. Oxidative dehydrogenation of ethane over multiwalled carbon nanotubes. ChemCatChem 2010;2:644-8.

37. Guo D, Shibuya R, Akiba C, Saji S, Kondo T, Nakamura J. Active sites of nitrogen-doped carbon materials for oxygen reduction reaction clarified using model catalysts. Science 2016;351:361-5.

38. Zhang C, Li T, Zhang J, Yan S, Qin C. Degradation of p-nitrophenol using a ferrous-tripolyphosphate complex in the presence of oxygen: the key role of superoxide radicals. Appl Catal B 2019;259:118030.

39. Yamakoshi Y, Sueyoshi S, Fukuhara K, Miyata N, Masumizu T, Kohno M. •OH and O2•- generation in aqueous C60 and C70 solutions by photoirradiation:  an EPR study. J Am Chem Soc 1998;120:12363-4.

40. Su C, Acik M, Takai K, et al. Probing the catalytic activity of porous graphene oxide and the origin of this behaviour. Nat Commun 2012;3:1298.

41. Doroshenko I, Pogorelov V, Sablinskas V. Infrared absorption spectra of monohydric alcohols. Dataset Papers in Chemistry 2013;2013:1-6.

Chemical Synthesis
ISSN 2769-5247 (Online)

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/