REFERENCES

1. Burroughes JH, Bradley DDC, Brown AR, et al. Light-emitting diodes based on conjugated polymers. Nature 1990;347:539-41.

2. Mcneill R, Siudak R, Wardlaw J, Weiss D. Electronic conduction in polymers. I. The chemical structure of polypyrrole. Aust J Chem 1963;16:1056-75.

3. Bolto B, Weiss D. Electronic conduction in polymers. II. The electrochemical reduction of polypyrrole at controlled potential. Aust J Chem 1963;16:1076-89.

4. Bolto B, Mcneill R, Weiss D. Electronic conduction in polymers. III. Electronic properties of polypyrrole. Aust J Chem 1963;16:1090-103.

5. Mccullough RD. The chemistry of conducting polythiophenes. Adv Mater 1998;10:93-116.

6. Sirringhaus H, Tessler N, Friend RH. Integrated optoelectronic devices based on conjugated polymers. Science 1998;280:1741-4.

7. Ago H, Petritsch K, Shaffer MSP, Windle AH, Friend RH. Composites of carbon nanotubes and conjugated polymers for photovoltaic devices. Adv Mater 1999;11:1281-5.

8. Friend RH, Gymer RW, Holmes AB, et al. Electroluminescence in conjugated polymers. Nature 1999;397:121-8.

9. Sirringhaus H, Brown PJ, Friend RH, et al. Two-dimensional charge transport in self-organized, high-mobility conjugated polymers. Nature 1999;401:685-8.

10. Mcgehee MD, Heeger AJ. Semiconducting (conjugated) polymers as materials for solid-state lasers. Adv Mater 2000;12:1655-68.

11. Thomas SW 3rd, Joly GD, Swager TM. Chemical sensors based on amplifying fluorescent conjugated polymers. Chem Rev 2007;107:1339-86.

12. Ho CL, Wong WY. Metal-containing polymers: facile tuning of photophysical traits and emerging applications in organic electronics and photonics. Coord Chem Rev 2011;255:2469-502.

13. Gracia R, Mecerreyes D. Polymers with redox properties: materials for batteries, biosensors and more. Polym Chem 2013;4:2206.

14. Liu S, Zhang K, Lu J, et al. High-efficiency polymer solar cells via the incorporation of an amino-functionalized conjugated metallopolymer as a cathode interlayer. J Am Chem Soc 2013;135:15326-9.

15. Du M, Li C, Liu C, Fang S. Design and construction of coordination polymers with mixed-ligand synthetic strategy. Coord Chem Rev 2013;257:1282-305.

16. Xu H, Chen R, Sun Q, et al. Recent progress in metal-organic complexes for optoelectronic applications. Chem Soc Rev 2014;43:3259-302.

17. Winter A, Schubert US. Synthesis and characterization of metallo-supramolecular polymers. Chem Soc Rev 2016;45:5311-57.

18. Ho CL, Yu ZQ, Wong WY. Multifunctional polymetallaynes: properties, functions and applications. Chem Soc Rev 2016;45:5264-95.

19. Götz S, Zechel S, Hager MD, Newkome GR, Schubert US. Versatile applications of metallopolymers. Prog Polym Sci 2021;119:101428.

20. Yu SC, Gong X, Chan WK. Synthesis and characterization of poly(benzobisoxazole)s and poly(benzobisthiazole)s with 2,2’-bipyridyl units in the backbone. Macromolecules 1998;31:5639-46.

21. Chen X, Liao JL, Liang Y, Ahmed MO, Tseng HE, Chen SA. High-efficiency red-light emission from polyfluorenes grafted with cyclometalated iridium complexes and charge transport moiety. J Am Chem Soc 2003;125:636-7.

22. Yam VWW, Wong KMC, Zhu N. Solvent-induced aggregation through metal···metal/π···π interactions: large solvatochromism of luminescent organoplatinum(II) terpyridyl complexes. J Am Chem Soc 2002;124:6506-7.

23. Yam VWW, Chan KHY, Wong KMC, Zhu N. Luminescent platinum(II) terpyridyl complexes: effect of counter ions on solvent-induced aggregation and color changes. Chem Eur J 2005;11:4535-43.

24. Yu C, Wong KMC, Chan KHY, Yam VWW. Polymer-induced self-assembly of alkynylplatinum(II) terpyridyl complexes by metal···metal/π···π interactions. Angew Chem Int Ed 2005;44:791-4.

25. Yu C, Chan KHY, Wong KMC, Yam VWW. Single-stranded nucleic acid-induced helical self-assembly of alkynylplatinum(II) terpyridyl complexes. Proc Natl Acad Sci USA 2006;103:19652-7.

26. Leung SYL, Lam WH, Yam VWW. Dynamic scaffold of chiral binaphthol derivatives with the alkynylplatinum(II) terpyridine moiety. Proc Natl Acad Sci USA 2013;110:7986-91.

27. Wong KMC, Yam VWW. Luminescence platinum(II) terpyridyl complexes - From fundamental studies to sensory functions. Coord Chem Rev 2007;251:2477-88.

28. Po C, Tam AYY, Wong KMC, Yam VWW. Supramolecular self-assembly of amphiphilic anionic platinum(II) complexes: a correlation between spectroscopic and morphological properties. J Am Chem Soc 2011;133:12136-43.

29. Wong KMC, Yam VWW. Self-assembly of luminescent alkynylplatinum(II) terpyridyl complexes: modulation of photophysical properties through aggregation behavior. Acc Chem Res 2011;44:424-34.

30. Cheung ASH, Leung SYL, Hau FKW, Yam VWW. Supramolecular self-assembly of amphiphilic alkynylplatinum(II) 2,6-bis(N-alkylbenzimidazol-2’-yl)pyridine complexes. Chem Res Chin Univ 2021;37:1079-84.

31. Zheng X, Chan MHY, Chan AKW, et al. Elucidation of the key role of Pt···Pt interactions in the directional self-assembly of platinum(II) complexes. Proc Natl Acad Sci USA 2022;119:e2116543119.

32. Tam AYY, Wong KMC, Yam VWW. Unusual luminescence enhancement of metallogels of alkynylplatinum(II) 2,6-bis(N-alkylbenzimidazol-2’-yl)pyridine complexes upon a gel-to-sol phase transition at elevated temperatures. J Am Chem Soc 2009;131:6253-60.

33. Yam VWW, Au VKM, Leung SYL. Light-emitting self-assembled materials based on d8 and d10 transition metal complexes. Chem Rev 2015;115:7589-728.

34. Yam VWW, Chan AKW, Hong EYH. Charge-transfer processes in metal complexes enable luminescence and memory functions. Nat Rev Chem 2020;4:528-41.

35. Chan MHY, Yam VWW. Toward the design and construction of supramolecular functional molecular materials based on metal-metal interactions. J Am Chem Soc 2022;144:22805-25.

36. Chan K, Chung CYS, Yam VWW. Conjugated polyelectrolyte-induced self-assembly of alkynylplatinum(II) 2,6-bis(benzimidazol-2’-yl)pyridine complexes. Chem Eur J 2015;21:16434-47.

37. Chan K, Chung CYS, Yam VWW. Parallel folding topology-selective label-free detection and monitoring of conformational and topological changes of different G-quadruplex DNAs by emission spectral changes via FRET of mPPE-Ala-Pt(II) complex ensemble. Chem Sci 2016;7:2842-55.

38. Chan CWT, Chan K, Yam VWW. Induced self-assembly and disassembly of alkynylplatinum(II) 2,6-bis(benzimidazol-2’-yl)pyridine complexes with charge reversal properties: “proof-of-principle” demonstration of ratiometric förster resonance energy transfer sensing of pH. ACS Appl Mater Interfaces 2022;Online ahead of print.

39. Sonogashira K, Takahashi S, Hagihara N. A new extended chain polymer, poly[trans-bis(tri-n-butylphosphine)platinum 1,4-butadiynediyl]. Macromolecules 1977;10:879-80.

40. Takahashi S, Kariya M, Yatake T, Sonogashira K, Hagihara N. Studies of poly-yne polymers containing transition metals in the main chain. 2. Synthesis of poly[trans-bis(tri-n-butylphosphine)platinum 1,4-butadiynediyl] and evidence of a rodlike structure. Macromolecules 1978;11:1063-6.

41. Beljonne D, Wittmann HF, Köhler A, et al. Spatial extent of the singlet and triplet excitons in transition metal-containing poly-ynes. J Chem Phys 1996;105:3868-77.

42. Younus M, Köhler A, Cron S, et al. Synthesis, electrochemistry, and spectroscopy of blue platinum(II) polyynes and diynes. Angew Chem Int Ed Engl 1998;37:3036-9.

43. Chawdhury N, Köhler A, Friend RH, et al. Evolution of lowest singlet and triplet excited states with number of thienyl rings in platinum poly-ynes. J Chem Phys 1999;110:4963-70.

44. Rogers JE, Cooper TM, Fleitz PA, Glass DJ, Mclean DG. Photophysical characterization of a series of platinum(II)-containing phenyl−ethynyl oligomers. J Phys Chem A 2002;106:10108-15.

45. Liu Y, Jiang S, Glusac K, Powell DH, Anderson DF, Schanze KS. Photophysics of monodisperse platinum-acetylide oligomers: delocalization in the singlet and triplet excited states. J Am Chem Soc 2002;124:12412-3.

46. Schanze KS, Silverman EE, Zhao X. Intrachain triplet energy transfer in platinum-acetylide copolymers. J Phys Chem B 2005;109:18451-9.

47. Clem TA, Kavulak DFJ, Westling EJ, Fréchet JMJ. Cyclometalated platinum polymers: synthesis, photophysical properties, and photovoltaic performance. Chem Mater 2010;22:1977-87.

48. Thomas III SW, Yagi S, Swager TM. Towards chemosensing phosphorescent conjugated polymers: cyclometalated platinum(II) poly(phenylene)s. J Mater Chem 2005;15:2829.

49. Wang P, Liu S, Lin Z, et al. Design and synthesis of conjugated polymers containing Pt(II) complexes in the side-chain and their application in polymer memory devices. J Mater Chem 2012;22:9576.

50. Lu W, Law YC, Han J, et al. A dicationic organoplatinum(II) complex containing a bridging 2,5-bis-(4-ethynylphenyl)-[1,3,4]oxadiazole ligand behaves as a phosphorescent gelator for organic solvents. Chem Asian J 2008;3:59-69.

51. Liu B, Yu W, Lai Y, Huang W. Blue-light-emitting fluorene-based polymers with tunable electronic properties. Chem Mater 2001;13:1984-91.

52. Vamvounis G, Schulz GL, Holdcroft S. Enhanced blue-violet emission from poly(fluorene-co-thiophene) host-guest systems. Macromolecules 2004;37:8897-902.

53. Grell M, Bradley DDC, Ungar G, Hill J, Whitehead KS. Interplay of physical structure and photophysics for a liquid crystalline polyfluorene. Macromolecules 1999;32:5810-7.

54. Lim E, Jung B, Shim H. Synthesis and characterization of a new light-emitting fluorene-thieno[3,2-b]thiophene-based conjugated copolymer. Macromolecules 2003;36:4288-93.

Chemical Synthesis
ISSN 2769-5247 (Online)

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/