REFERENCES
1. Nitopi S, Bertheussen E, Scott SB, et al. Progress and perspectives of electrochemical CO2 reduction on copper in aqueous electrolyte. Chem Rev 2019;119:7610-72.
3. Seh ZW, Kibsgaard J, Dickens CF, et al. Combining theory and experiment in electrocatalysis: Insights into materials design. Science 2017;355:eaad4998.
4. Li Z, Wu X, Jiang X, et al. Surface carbon layer controllable Ni3Fe particles confined in hierarchical N-doped carbon framework boosting oxygen evolution reaction. Adv Powder Mater 2022;1:100020.
5. Li Y, Yu H, Wang Z, et al. Boron-doped silver nanosponges with enhanced performance towards electrocatalytic nitrogen reduction to ammonia. Chem Commun 2019;55:14745-8.
6. Zhao R, Chen Z, Li Q, et al. N-doped LaPO4: an effective Pt-free catalyst for electrocatalytic oxygen reduction. Chem Catal 2022;2:3590-606.
7. Hu S-N, Tian N, Li M-Y, et al. Trapezohedral platinum nanocrystals with high-index facets for high-performance hydrazine electrooxidation. Chem Synth 2023;3:4.
8. Wang X, Wang J, Wang P, et al. Engineering 3d-2p-4f gradient orbital coupling to enhance electrocatalytic oxygen reduction. Adv Mater 2022;34:2206540.
9. Wang W, Li X, He T, Liu Y, Jin M. Engineering surface structure of Pt nanoshells on Pd nanocubes to preferentially expose active surfaces for ORR by manipulating the growth kinetics. Nano Lett 2019;19:1743-8.
10. Li Y, Peng C-K, Hu H, et al. Interstitial boron-triggered electron-deficient Os aerogels for enhanced pH-universal hydrogen evolution. Nat Commun 2022;13:1143.
11. Li Q, Wang X, Xie Z, et al. Polar bonds induced strong Pd-support electronic interaction drives remarkably enhanced oxygen reduction activity and stability. Appl Catal B 2022;305:121020.
12. Jiang X, Xiong Y, Wang Y, et al. Treelike two-level PdxAgy nanocrystals tailored for bifunctional fuel cell electrocatalysis. J Mater Chem A 2019;7:5248-57.
13. Jiang X, Wang J, Huang T, et al. Sub-5 nm palladium nanoparticles in situ embedded in N-doped carbon nanoframes: facile synthesis, excellent sinter resistance and electrocatalytic properties. J Mater Chem A 2019;7:26243-9.
14. Yang Y, Zhu X, Wang L, et al. Breaking scaling relationships in alkynol semi-hydrogenation by manipulating interstitial atoms in Pd with d-electron gain. Nat Commun 2022;13:2754.
15. Su L, Zhao Y, Jin Y, et al. Identifying the role of hydroxyl binding energy in a non-monotonous behavior of Pd-Pd4S for hydrogen oxidation reaction. Adv Funct Mater 2022;32:2113047.
16. Wang N, Zhao X, Zhang R, et al. Highly selective oxygen reduction to hydrogen peroxide on a carbon-supported single-atom Pd electrocatalyst. ACS Catal 2022;12:4156-64.
17. Liu H, Fu J, Li H, et al. Single palladium site in ordered porous heteroatom-doped carbon for high-performance alkaline hydrogen oxidation. Appl Catal B 2022;306:121029.
18. Lee S J, Theerthagiri J, Nithyadharseni P, et al. Heteroatom-doped graphene-based materials for sustainable energy applications: a review. Renew Sustain Energy Rev 2021;143:110849.
19. Dann EK, Gibson EK, Blackmore RH, et al. Structural selectivity of supported Pd nanoparticles for catalytic NH3 oxidation resolved using combined operando spectroscopy. Nat Catal 2019;2:157-63.
20. Qin Q, Jang H, Chen L, et al. Coupling a low loading of IrP2, PtP2, or Pd3P with heteroatom-doped nanocarbon for overall water-splitting cells and zinc-air batteries. ACS Appl Mater Interf 2019;11:16461-73.
21. Jiang TW, Zhou YW, Ma XY, et al. Spectrometric study of electrochemical CO2 reduction on Pd and Pd-B electrodes. ACS Catal 2021;11:840-8.
22. Wang YF, Zhu C, Yang YY, Zhao ZG. Surface-clean low-doped PdB/C as superior electrocatalysts toward ethanol oxidation in alkaline media. J Energy Chem 2018;27:389-94.
23. Vo Doan TT, Wang J, Poon KC, et al. Theoretical modelling and facile synthesis of a highly active boron-doped palladium catalyst for the oxygen reduction reaction. Angew Chem Int Ed 2016;55:6842-7.
24. Chan C WA, Mahadi A H, Li M M-J, et al. Interstitial modification of palladium nanoparticles with boron atoms as a green catalyst for selective hydrogenation. Nat Commun 2014;5:5787.
25. Chen H, Zhang B, Liang X, Zou X. Light alloying element-regulated noble metal catalysts for energy-related applications. Chinese J Catal 2022;43:611-35.
26. Wang M, Li L, Wang M, Huang X. Recent progress in palladium-nonmetal nanostructure development for fuel cell applications. NPG Asia Mater 2022;14:1-8.
27. Zhang C, Liu W, Chen C, et al. Emerging interstitial/substitutional modification of Pd-based nanomaterials with nonmetallic elements for electrocatalytic applications. Nanoscale 2022;14:2915-42.
28. Guo R, Zhang K, Ji S, Zheng Y, Jin M. Recent advances in nonmetallic atom-doped metal nanocrystals: synthesis and catalytic applications. Chin Chem Lett 2021;32:2679-92.
29. Wang S, Tian D, Wang X, et al. Uniform PdH0.33 nanodendrites with a high oxygen reduction activity tuned by lattice H. Electrochem Commun 2019;102:67-71.
30. Kim D, Koh J, Kang S, et al. Chemomechanical effect of reduced graphene oxide encapsulation on hydrogen storage performance of Pd nanoparticles. J Mater Chem A 2021;9:11641-50.
31. Liu Y, Chen Z, Liu C, et al. Exploiting H-induced lattice expansion in
32. Xu W, Fan G, Chen J, et al. Nanoporous palladium hydride for electrocatalytic N2 reduction under ambient conditions. Angew Chem Int Ed Engl 2020;59:3511-6.
33. Zhu Y, Gao C, Bai S, et al. Hydriding Pd cocatalysts: an approach to giant enhancement on photocatalytic CO2 reduction into CH4. Nano Res 2017;10:3396-406.
34. Wang Z, Dai Z, Wang S, et al. Enhancing electrochemical ammonia synthesis on palladium nanorods through surface hydrogenation. Chem Eng J 2021;416:129105.
35. Liu G, Zhou W, Ji Y, et al. Hydrogen-intercalation-induced lattice expansion of Pd@Pt core-shell nanoparticles for highly efficient electrocatalytic alcohol oxidation. J Am Chem Soc 2021;143:11262-70.
36. Zhao P, Jin Z, Chen Q, et al. Local generation of hydrogen for enhanced photothermal therapy. Nat Commun 2018;9:4241.
37. Shi Y, Schimmenti R, Zhu S, et al. Solution-phase synthesis of PdH0.706 nanocubes with enhanced stability and activity toward formic acid oxidation. J Am Chem Soc 2022;144:2556-68.
38. Lin B, Wu X, Xie L, et al. Atomic imaging of subsurface interstitial hydrogen and insights into surface reactivity of palladium hydrides. Angew Chem Int Ed 2020;59:20348-52.
39. Rahul R, Singh RK, Bera B, Devivaraprasad R, Neergat M. The role of surface oxygenated-species and adsorbed hydrogen in the oxygen reduction reaction (ORR) mechanism and product selectivity on Pd-based catalysts in acid media. Phys Chem Chem Phys 2015;17:15146-55.
40. Zhan C, Li H, Li X, Jiang Y, Xie Z. Synthesis of PdH0.43 nanocrystals with different surface structures and their catalytic activities towards formic acid electro-oxidation. Sci China Mater 2019;63:375-82.
41. Wang D, Jiang X, Lin Z, et al. Ethanol-induced hydrogen insertion in ultrafine IrPdH boosts pH-universal hydrogen evolution. Small 2022;18:2204063.
42. Fan J, Wu J, Cui X, et al. Hydrogen stabilized RhPdH 2D bimetallene nanosheets for efficient alkaline hydrogen evolution. J Am Chem Soc 2020;142:3645-51.
43. Zhao Z, Flores Espinosa M M, Zhou J, et al. Synthesis of surface controlled nickel/palladium hydride nanodendrites with high performance in benzyl alcohol oxidation. Nano Res 2019;12:1467-72.
44. Wu J, Cui X, Fan J, et al. Stable bimetallene hydride boosts anodic CO tolerance of fuel cells. ACS Energy Lett 2021;6:1912-9.
45. Lu Y, Wang J, Peng Y, Fisher A, Wang X. Highly efficient and durable Pd hydride nanocubes embedded in 2D amorphous NiB nanosheets for oxygen reduction reaction. Adv Energy Mater 2017;7:1700919.
46. Bu L, Zhu X, Zhu Y, et al. H-implanted Pd icosahedra for oxygen reduction catalysis: from calculation to practice. CCS Chem 2021;3:1972-82.
47. Fan J, Cui X, Yu S, et al. Interstitial hydrogen atom modulation to boost hydrogen evolution in Pd-based alloy nanoparticles. ACS Nano 2019;13:12987-95.
48. Sun H Y, Ding Y, Yue Y Q, et al. Bifunctional palladium hydride nanodendrite electrocatalysts for hydrogen evolution integrated with formate oxidation. ACS Appl Mater Interf 2021;13:13149-57.
49. Jia Y, Huang T-H, Lin S, et al. Stable Pd–Cu hydride catalyst for efficient hydrogen evolution. Nano Lett 2022;22:1391-7.
50. Zhao Z, Huang X, Li M, et al. Synthesis of stable shape-controlled catalytically active β-palladium hydride. J Am Chem Soc 2015;137:15672-5.
51. Guo X, Hu Z, Lv J, Qu J, Hu S. Palladium hydride with high-index facets for enhanced methanol oxidation. Dalton Trans 2021;50:10359-64.
52. Kabiraz M K, Kim J, Lee W-J, et al. Ligand effect of shape-controlled β-palladium hydride nanocrystals on liquid-fuel oxidation reactions. Chem Mater 2019;31:5663-73.
53. Zhang J, Chen M, Li H, et al. Stable palladium hydride as a superior anode electrocatalyst for direct formic acid fuel cells. Nano Energy 2018;44:127-34.
54. Chang Q, Kim J, Lee J H, et al. Boosting activity and selectivity of CO2 electroreduction by pre-hydridizing Pd nanocubes. Small 2020;16:2005305.
55. Baldi A, Narayan T C, Koh A L, Dionne J A. In situ detection of hydrogen-induced phase transitions in individual palladium nanocrystals. Nat Mater 2014;13:1143-8.
56. Li G, Kobayashi H, Taylor J M, et al. Hydrogen storage in Pd nanocrystals covered with a metal-organic framework. Nat Mater 2014;13:802-6.
57. Pei Y, Zhou G, Luan N, et al. Synthesis and catalysis of chemically reduced metal–metalloid amorphous alloys. Chem Soc Rev 2012;41:8140-62.
58. Carenco S, Portehault D, Boissière C, Mézailles N, Sanchez C. Nanoscaled metal borides and phosphides: recent developments and perspectives. Chem Rev 2013;113:7981-8065.
59. Wang G, Liu J, Sui Y, et al. Palladium structure engineering induced by electrochemical H intercalation boosts hydrogen evolution catalysis. J Mater Chem A 2019;7:14876-81.
60. Chen T, Chen S, Song P, et al. Single-molecule nanocatalysis reveals facet-dependent catalytic kinetics and dynamics of pallidium nanoparticles. ACS Catal 2017;7:2967-72.
61. Li G, Kobayashi H, Dekura S, et al. Shape-dependent hydrogen-storage properties in Pd nanocrystals: which does hydrogen prefer, octahedron (111) or cube (100)? J Am Chem Soc 2014;136:10222-5.
62. Yang H G, Sun C H, Qiao S Z, et al. Anatase TiO2 single crystals with a large percentage of reactive facets. Nature 2008;453:638-41.
63. Koper M T M. Structure sensitivity and nanoscale effects in electrocatalysis. Nanoscale 2011;3:2054-73.
64. Kondo S, Nakamura M, Maki N, Hoshi N. Active sites for the oxygen reduction reaction on the low and high index planes of palladium. J Phys Chem C 2009;113:12625-8.
65. Erikson H, Sarapuu A, Alexeyeva N, et al. Electrochemical reduction of oxygen on palladium nanocubes in acid and alkaline solutions. Electrochim Acta 2012;59:329-35.
66. Erikson H, Sarapuu A, Tammeveski K, Solla-Gullón J, Feliu J M. Enhanced electrocatalytic activity of cubic Pd nanoparticles towards the oxygen reduction reaction in acid media. Electrochem Commun 2011;13:734-7.
67. Zhu W, Kattel S, Jiao F, Chen J G. Shape-controlled CO2 electrochemical reduction on nanosized Pd hydride cubes and octahedra. Adv Energy Mater 2019;9:1802840.
68. Johnson NJJ, Lam B, Sherbo RS, Fork DK, Berlinguette CP. Ligands affect hydrogen absorption and desorption by palladium nanoparticles. Chem Mater 2019;31:8679-84.
69. Kitchin JR, Norskov JK, Barteau MA, Chen JG. Role of strain and ligand effects in the modification of the electronic and chemical properties of bimetallic surfaces. Phys Rev Lett 2004;93:156801.
70. Moseley P, Curtin WA. Computational design of strain in core-shell nanoparticles for optimizing catalytic activity. Nano Lett 2015;15:4089-95.
71. Wang L, Zeng Z, Gao W, et al. Tunable intrinsic strain in two-dimensional transition metal electrocatalysts. Science 2019;363:870-4.
72. Kobayashi K, Kobayashi H, Maesato M, et al. Discovery of hexagonal structured Pd-B nanocrystals. Angew Chem Int Ed 2017;56:6578-82.
73. Lu W, Liu T, Xie L, et al. In situ derived Co-B nanoarray: a high-efficiency and durable 3D bifunctional electrocatalyst for overall alkaline water splitting. Small 2017;13:1700805.
74. Masa J, Sinev I, Mistry H, et al. Ultrathin high surface area nickel boride (NixB) nanosheets as highly efficient electrocatalyst for oxygen evolution. Adv Energy Mater 2017;7:1700381.
75. Regmi YN, Mann JK, McBride JR, et al. Catalytic transfer hydrogenolysis of organosolv lignin using B-containing FeNi alloyed catalysts. Catal Today 2018;302:190-5.
76. Wang M, Qin X, Jiang K, et al. Electrocatalytic activities of oxygen reduction reaction on Pd/C and Pd-B/C catalysts. J Phys Chem C 2017;121:3416-23.
77. Li H, Qin X, Zhang XG, Jiang K, Cai WB. Boron-doped platinum-group metals in electrocatalysis: a perspective. ACS Catal 2022;12:12750-64.
78. Wang JY, Kang YY, Yang H, Cai WB. Boron-doped palladium nanoparticles on carbon black as a superior catalyst for formic acid electro-oxidation. J Phys Chem C 2009;113:8366-72.
79. Ellis IT, Wolf EH, Jones G, et al. Lithium and boron as interstitial palladium dopants for catalytic partial hydrogenation of acetylene. Chem Commun 2017;53:601-4.
80. Yoo JS, Zhao ZJ, Nørskov JK, Studt F. Effect of boron modifications of palladium catalysts for the production of hydrogen from formic acid. ACS Catal 2015;5:6579-86.
81. Wang Y, Lv H, Sun L, et al. Ultrathin and wavy PdB alloy nanowires with controlled surface defects for enhanced ethanol oxidation electrocatalysis. ACS Appl Mater Interf 2021;13:17599-607.
82. Sun L, Lv H, Wang Y, Xu D, Liu B. Unveiling synergistic effects of interstitial boron in palladium-based nanocatalysts for ethanol oxidation electrocatalysis. J Phys Chem Lett 2020;11:6632-9.
83. Lv H, Sun L, Xu D, et al. Mesoporous palladium–boron alloy nanospheres. J Mater Chem A 2019;7:24877-83.
84. Li J, Chen J, Wang Q, Cai WB, Chen S. Controllable increase of boron content in B-Pd interstitial nanoalloy to boost the oxygen reduction activity of palladium. Chem Mater 2017;29:10060-7.
85. Hong S, Chung S, Park J, et al. Contribution of interstitial boron in a boron-incorporated palladium catalyst toward formate oxidation in an alkaline direct formate fuel cell. ACS Catal 2021;11:4722-9.
86. Jiang B, Zhang XG, Jiang K, Wu DY, Cai WB. Boosting formate production in electrocatalytic CO2 reduction over wide potential window on Pd surfaces. J Am Chem Soc 2018;140:2880-9.
87. Wang Q, Liao Y, Zhang H, et al. One-pot synthesis of carbon-supported monodisperse palladium nanoparticles as excellent electrocatalyst for ethanol and formic acid oxidation. J Power Sources 2015;292:72-7.
88. Lv H, Xu D, Kong C, et al. Synthesis and crystal-phase engineering of mesoporous palladium-boron alloy nanoparticles. ACS Cent Sci 2020;6:2347-53.
89. Li Z, Xie Z, Chen H, et al. Realization of interstitial boron ordering and optimal near-surface electronic structure in Pd-B alloy electrocatalysts. Chem Eng J 2021;419:129568.
90. Jiang K, Chang J, Wang H, et al. Small addition of boron in palladium catalyst, big improvement in fuel cell’s performance: what may interfacial spectroelectrochemistry tell? ACS Appl Mater Interf 2016;8:7133-8.
91. Ai X, Zou X, Chen H, et al. Transition-metal-boron intermetallics with strong interatomic
92. Teschner D, Borsodi J, Wootsch A, et al. The roles of subsurface carbon and hydrogen in palladium-catalyzed alkyne hydrogenation. Science 2008;320:86-9.
93. Ziemecki SB, Jones GA, Swartzfager DG, Harlow RL, Faber J. Formation of interstitial palladium-carbon phase by interaction of ethylene, acetylene, and carbon monoxide with palladium. J Am Chem Soc 1985;107:4547-8.
94. Maciejewski M, Baiker A. Incorporation of carbon into palladium during low-temperature disproportionation of carbon monoxide over palladium/zirconia prepared from glassy palladium-zirconium. J Phys Chem 1994;98:285-90.
95. Zaidi AH. Stability of Pd-C phase in the oxidation of ethylene over palladium catalysts. Appl Catal 1987;30:131-40.
96. Wang C, Jia Y, Zhang Z, et al. Role of PdCx species in Pd@PdCx/AlOOH/Al-fiber catalyst for the CO oxidative coupling to dimethyl oxalate. Appl Surf Sci 2019;478:840-5.
97. Simonov AN, Pyrjaev PA, Simonov PA, et al. Enhanced catalytic activity for hydrogen electrooxidation and CO tolerance of carbon-supported non-stoichiometric palladium carbides. J Mol Catal A Chem 2012;353-354:204-14.
98. Teschner D, Révay Z, Borsodi J, et al. Understanding palladium hydrogenation catalysts: when the nature of the reactive molecule controls the nature of the catalyst active phase. Angew Chem Int Ed 2008;47:9274-8.
99. Brandt B, Fischer JH, Ludwig W, et al. Isomerization and hydrogenation of cis-2-butene on Pd model catalyst. J Phys Chem C 2008;112:11408-20.
100. Huang F, Jia Z, Diao J, et al. Palladium nanoclusters immobilized on defective nanodiamond-graphene core-shell supports for semihydrogenation of phenylacetylene. J Energy Chem 2019;33:31-6.
101. Shao L, Zhang B, Zhang W, et al. Improved selectivity by stabilizing and exposing active phases on supported Pd nanoparticles in acetylene-selective hydrogenation. Chem Eur J 2012;18:14962-6.
102. Canton P, Meneghini C, Riello P, Balerna A, Benedetti A. Thermal evolution of carbon-supported Pd nanoparticles studied by time-resolved X-ray diffraction. J Phys Chem B 2001;105:8088-91.
103. Makkee M, van de Sandt EJAX, Wiersma A, Moulijn JA. Development of a satisfactory palladium on activated carbon catalyst for the selective hydrogenolysis of CCl2F2(CFC-12) into CH2F2(HFC-32). J Mol Catal A Chem 1998;134:191-200.
104. Wakisaka T, Kusada K, Wu D, et al. Rational synthesis for a noble metal carbide. J Am Chem Soc 2020;142:1247-53.
105. Okitsu K, Mizukoshi Y, Bandow H, et al. Synthesis of palladium nanoparticles with interstitial carbon by sonochemical reduction of tetrachloropalladate(II) in aqueous solution. J Phys Chem B 1997;101:5470-2.
106. Guo R, Chen Q, Li X, et al. PdCx nanocrystals with tunable compositions for alkyne semihydrogenation. J Mater Chem A 2019;7:4714-20.
107. Garcia-Ortiz A, Vidal J D, Iborra S, et al. Synthesis of a hybrid Pd0/Pd-carbide/carbon catalyst material with high selectivity for hydrogenation reactions. J Catal 2020;389:706-13.
108. Piqué O, Koleva IZ, Viñes F, et al. Subsurface carbon: a general feature of noble metals. Angew Chem Int Ed 2019;58:1744-8.
109. Lord RW, Holder CF, Fenton JL, Schaak RE. Seeded growth of metal nitrides on noble-metal nanoparticles to form complex nanoscale heterostructures. Chem Mater 2019;31:4605-13.
110. Gage SH, Trewyn BG, Ciobanu CV, Pylypenko S, Richards RM. Synthetic advancements and catalytic applications of nickel nitride. Catal Sci Technol 2016;6:4059-76.
111. Alexander AM, Hargreaves JSJ. Alternative catalytic materials: carbides, nitrides, phosphides and amorphous boron alloys. Chem Soc Rev 2010;39:4388-401.
112. Marchand R, Laurent Y, Guyader J, L'Haridon P, Verdier P. Nitrides and oxynitrides: preparation, crystal chemistry and properties. J Eur Ceram Soc 1991;8:197-213.
113. Miura A, Lowe M, Leonard BM, et al. Silver delafossite nitride, AgTaN2? J Solid State Chem 2011;184:7-11.
114. Balogun MS, Zeng Y, Qiu W, et al. Three-dimensional nickel nitride (Ni3N) nanosheets: free standing and flexible electrodes for lithium ion batteries and supercapacitors. J Mater Chem A 2016;4:9844-9.
115. Lu X, Liu T, Zhai T, et al. Improving the cycling stability of metal-nitride supercapacitor electrodes with a thin carbon shell. Adv Energy Mater 2014;4:1300994.
116. Lu X, Wang G, Zhai T, et al. Stabilized TiN nanowire arrays for high-performance and flexible supercapacitors. Nano Lett 2012;12:5376-81.
117. Meng F, Zhong H, Bao D, Yan J, Zhang X. In situ coupling of strung Co4N and intertwined N-C fibers toward free-standing bifunctional cathode for robust, efficient, and flexible Zn-air batteries. J Am Chem Soc 2016;138:10226-31.
118. Fechler N, Tiruye GA, Marcilla R, Antonietti M. Vanadium nitride@N-doped carbon nanocomposites: tuning of pore structure and particle size through salt templating and its influence on supercapacitance in ionic liquid media. RSC Adv 2014;4:26981-9.
119. Shalom M, Molinari V, Esposito D, et al. Sponge-like nickel and nickel nitride structures for catalytic applications. Adv Mater 2014;26:1272-6.
120. Choi D, Kumta PN. Synthesis, structure, and electrochemical characterization of nanocrystalline tantalum and tungsten nitrides. J Am Chem Soc 2007;90:3113-20.
121. Gregoryanz E, Sanloup C, Somayazulu M, et al. Synthesis and characterization of a binary noble metal nitride. Nat Mater 2004;3:294-7.
123. Li Z, Gordon RG, Pallem V, Li H, Shenai DV. Direct-liquid-injection chemical vapor deposition of nickel nitride films and their reduction to nickel films. Chem Mater 2010;22:3060-6.
124. Aguas MM, Nartowski AP, Parkin I, MacKenzie MJ, Craven A. Chromium nitrides (CrN, Cr2N) from solid state metathesis reactions: effects of dilution and nitriding reagent. J Mater Chem 1998;8:1875-80.
125. Xu F, Xie Y, Zhang X, Zhang S, Shi L. A benzene-thermal metathesis route to pure metastable rocksalt GaN. New J Chem 2003;27:565-7.
126. Jackson AW, Hector AL. A nonoxidic sol-gel route to titanium nitride and carbonitride films by primary aminecondensation. J Mater Chem 2007;17:1016-22.
127. Veith GM, Lupini AR, Baggetto L, et al. Evidence for the formation of nitrogen-rich platinum and palladium nitride nanoparticles. Chem Mater 2013;25:4936-45.
128. Guo R, Zhang K, Liu Y, et al. Hydrothermal synthesis of palladium nitrides as robust multifunctional electrocatalysts for fuel cells. J Mater Chem A 2021;9:6196-204.
129. Sun L, Liu B. Mesoporous PdN alloy nanocubes for efficient electrochemical nitrate reduction to ammonia. Adv Mater ;2022:2207305.
130. Vaughn Ii DD, Araujo J, Meduri P, et al. Solution synthesis of Cu3PdN nanocrystals as ternary metal nitride electrocatalysts for the oxygen reduction reaction. Chem Mater 2014;26:6226-32.
131. Shao M. Palladium-based electrocatalysts for hydrogen oxidation and oxygen reduction reactions. J Power Sources 2011;196:2433-44.
132. Wu J, Yang H. Platinum-based oxygen reduction electrocatalysts. Accounts Chem Res 2013;46:1848-57.
133. Xie Y, Cai J, Wu Y, et al. Boosting water dissociation kinetics on Pt-Ni nanowires by N-induced orbital tuning. Adv Mater 2019;31:1807780.
134. Lee S, Jung JY, Jang I, et al. Anion constructor for atomic-scale engineering of antiperovskite crystals for electrochemical reactions. Adv Funct Mater 2021;31:2009241.
135. Yang H, Li S, Feng F, et al. Palladium nanoparticles with surface enrichment of palladium oxide species immobilized on the aniline-functionalized graphene as an advanced electrocatalyst of ethanol oxidation. ACS Sustain Chem Eng 2019;7:14621-8.
136. Guerrero-Ortega LPA, Ramírez-Meneses E, Cabrera-Sierra R, et al. Pd and Pd@PdO core–shell nanoparticles supported on Vulcan carbon XC-72R: comparison of electroactivity for methanol electro-oxidation reaction. J Mater Sci 2019;54:13694-714.
137. Xiao JW, Fan SX, Wang F, et al. Porous Pd nanoparticles with high photothermal conversion efficiency for efficient ablation of cancer cells. Nanoscale 2014;6:4345-51.
138. Ren M, Kang Y, He W, et al. Origin of performance degradation of palladium-based direct formic acid fuel cells. Appl Catal B 2011;104:49-53.
139. Oh S-H, Hoflund GB. Low-temperature catalytic carbon monoxide oxidation over hydrous and anhydrous palladium oxide powders. J Catal 2007;245:35-44.
140. Hu W, Li GX, Chen JJ, et al. Enhanced catalytic performance of a PdO catalyst prepared via a two-step method of in situ reduction-oxidation. Chem Commun 2017;53:6160-3.
141. Jiang B, Song S, Wang J, et al. Nitrogen-doped graphene supported Pd@PdO core-shell clusters for C-C coupling reactions. Nano Res 2014;7:1280-90.
142. Wang TJ, Li FM, Huang H, et al. Porous Pd-PdO nanotubes for methanol electrooxidation. Adv Funct Mater 2020;30:2000534.
143. Lin R, Luo MF, Xin Q, Sun GQ. The mechanism studies of ethanol oxidation on PdO catalysts by TPSR techniques. Catal Lett 2004;93:139-44.
144. Kibis LS, Stadnichenko AI, Koscheev SV, Zaikovskii VI, Boronin AI. Highly oxidized palladium nanoparticles comprising Pd4+ species: spectroscopic and structural aspects, thermal stability, and reactivity. J Phys Chem C 2012;116:19342-8.
145. Kuriganova AB, Faddeev NA, Leontyev IN, et al. New electrochemical approach for the synthesis of Pd-PdO/C electrocatalyst and application to formic acid electrooxidation. ChemistrySelect 2019;4:8390-3.
146. Yao S, Li G, Liu C, Xing W. Enhanced catalytic performance of carbon supported palladium nanoparticles by in-situ synthesis for formic acid electrooxidation. J Power Sources 2015;284:355-60.
147. Yang F, Wang C, Dong S, et al. Plasma synthesis of Pd/PdO supported on porous graphene as electrocatalyst for methanol oxidation. Mater Lett 2016;174:192-6.
148. Gao N, Ma R, Wang X, et al. Activating the Pd-based catalysts via tailoring reaction interface towards formic acid dehydrogenation. Int J Hydrogen Energy 2020;45:17575-82.
149. Lv Q, Meng Q, Liu W, et al. Pd-PdO interface as active site for HCOOH selective dehydrogenation at ambient condition. J Phys Chem C 2018;122:2081-8.
150. Lv J, Wu S, Tian Z, et al. Construction of PdO-Pd interfaces assisted by laser irradiation for enhanced electrocatalytic N2 reduction reaction. J Mater Chem A 2019;7:12627-34.
151. Zhou Y, Zhu X, Zhang B, et al. High performance formic acid fuel cell benefits from Pd-PdO catalyst supported by ordered mesoporous carbon. Int J Hydrogen Energy 2020;45:29235-45.
152. Ding K, Li Y, Zhao Y, et al. Dry-grinding synthesized multi-walled carbon nanotubes supported PdO catalyst for ethanol oxidation reaction. Electrochim Acta 2014;149:186-92.
153. Chen C, Yeh YH, Cargnello M, et al. Methane oxidation on Pd@ZrO2/Si-Al2O3 is enhanced by surface reduction of ZrO2. ACS Catal 2014;4:3902-9.
154. Ding K, Qu R, Han J, et al. Unexpected facilitation of the pyrolysis products of potassium ferrocyanide to the electrocatalytic activity of a PdO based palladium iron composite catalyst towards ethanol oxidation reaction (EOR). Int J Hydrogen Energy 2021;46:633-44.
155. Li HC, Zhang YJ, Hu X, et al. Metal-organic framework templated Pd@PdO-Co3O4 nanocubes as an efficient bifunctional oxygen electrocatalyst. Adv Energy Mater 2018;8:1702734.
156. Cargnello M, Jaén JJD, Garrido JCH, et al. Exceptional activity for methane combustion over modular Pd@CeO2 subunits on functionalized Al2O3. Science 2012;337:713-7.
157. Liu J, Luo Z, Li J, et al. Graphene-supported palladium phosphide PdP2 nanocrystals for ethanol electrooxidation. Appl Catal B 2019;242:258-66.
158. Zou X, Rui Z, Ji H. Core-shell NiO@PdO nanoparticles supported on alumina as an advanced catalyst for methane oxidation. ACS Catal 2017;7:1615-25.
159. Alyani M, Smith KJ. Kinetic analysis of the inhibition of CH4 oxidation by H2O on PdO/Al2O3 and CeO2/PdO/Al2O3 catalysts. Ind Eng Chem Res 2016;55:8309-18.
160. Du L, Qian K, Zhu X, et al. Interface engineering of palladium and zinc oxide nanorods with strong metal-support interactions for enhanced hydrogen production from base-free formaldehyde solution. J Mater Chem A 2019;7:8855-64.
161. Meher S, Rana RK. A rational design of a Pd-based catalyst with a metal-metal oxide interface influencing molecular oxygen in the aerobic oxidation of alcohols. Green Chem 2019;21:2494-503.
162. Narayanaru S, Anilkumar GM, Ito M, Tamaki T, Yamaguchi T. An enhanced electrochemical CO2 reduction reaction on the SnOx-PdO surface of SnPd nanoparticles decorated on N-doped carbon fibers. Catal Sci Technol 2021;11:143-51.
163. Li Y, Kidkhunthod P, Zhou Y, Wang X, Lee JM. Dense heterointerfaces and unsaturated coordination synergistically accelerate electrocatalysis in Pt/Pt5P2 porous nanocages. Adv Funct Mater 2022;32:2205985.
164. Zhang J, Xu Y, Zhang B. Facile synthesis of 3D Pd-P nanoparticle networks with enhanced electrocatalytic performance towards formic acid electrooxidation. Chem Commun 2014;50:13451-3.
165. Lv H, Teng Y, Wang Y, Xu D, Liu B. Highly branched and defect-rich PdP nanosheets for ethanol oxidation electrocatalysis. Chem Commun 2020;56:15667-70.
166. Yang H, Yu Z, Li S, et al. Ultrafine palladium-gold-phosphorus ternary alloyed nanoparticles anchored on ionic liquids-noncovalently functionalized carbon nanotubes with excellent electrocatalytic property for ethanol oxidation reaction in alkaline media. J Catal 2017;353:256-64.
167. Xie H, Geng Q, Zhu X, et al. PdP2 nanoparticles–reduced graphene oxide for electrocatalytic N2 conversion to NH3 under ambient conditions. J Mater Chem A 2019;7:24760-4.
168. Zhao M, Abe K, Yamaura SI, Yamamoto Y, Asao N. Fabrication of Pd-Ni-P metallic glass nanoparticles and their application as highly durable catalysts in methanol electro-oxidation. Chem Mater 2014;26:1056-61.
169. Chen L, Lu L, Zhu H, et al. Improved ethanol electrooxidation performance by shortening Pd-Ni active site distance in Pd-Ni-P nanocatalysts. Nat Commun 2017;8:14136.
170. Zhang K, Wang C, Bin D, et al. Fabrication of Pd/P nanoparticle networks with high activity for methanol oxidation. Catal Sci Technol 2016;6:6441-7.
171. Cheng L, Zhang Z, Niu W, Xu G, Zhu L. Carbon-supported Pd nanocatalyst modified by non-metal phosphorus for the oxygen reduction reaction. J Power Sources 2008;182:91-4.
172. Tianou H, Wang W, Yang X, et al. Inflating hollow nanocrystals through a repeated Kirkendall cavitation process. Nat Commun 2017;8:1261.
173. Yang H, Li S, Jin R, et al. Surface engineering of phosphorus low-doping palladium nanoalloys anchored on the three-dimensional nitrogen-doped graphene for enhancing ethanol electroxidation. Chem Eng J 2020;389:124487.
174. Luo F, Zhang Q, Yu X, et al. Palladium phosphide as a stable and efficient electrocatalyst for overall water splitting. Angew Chem Int Ed 2018;57:14862-7.
175. Furukawa S, Matsunami Y, Hamada I, et al. Remarkable enhancement in hydrogenation ability by phosphidation of ruthenium: specific surface structure having unique Ru ensembles. ACS Catal 2018;8:8177-81.
176. Pu Z, Zhao J, Amiinu IS, et al. A universal synthesis strategy for P-rich noble metal diphosphide-based electrocatalysts for the hydrogen evolution reaction. Energ Environ Sci 2019;12:952-7.
177. Yu J, Wu X, Zhang H, et al. Core effect on the performance of N/P codoped carbon encapsulating noble-metal phosphide nanostructures for hydrogen evolution reaction. ACS Appl Energy Mater 2019;2:2645-53.
178. Yang G, Chen Y, Zhou Y, Tang Y, Lu T. Preparation of carbon supported Pd-P catalyst with high content of element phosphorus and its electrocatalytic performance for formic acid oxidation. Electrochem Commun 2010;12:492-5.
179. Poon KC, Tan DCL, Vo TDT, et al. Newly developed stepwise electroless deposition enables a remarkably facile synthesis of highly active and stable amorphous Pd nanoparticle electrocatalysts for oxygen reduction reaction. J Am Chem Soc 2014;136:5217-20.
180. Wang R, Ma Y, Wang H, Key J, Ji S. Gas-liquid interface-mediated room-temperature synthesis of “clean” PdNiP alloy nanoparticle networks with high catalytic activity for ethanol oxidation. Chem Commun 2014;50:12877-9.
181. Wang Y, Shi FF, Yang YY, Cai WB. Carbon supported Pd-Ni-P nanoalloy as an efficient catalyst for ethanol electro-oxidation in alkaline media. J Power Sources 2013;243:369-73.
182. Lv H, Sun L, Xu D, Ma Y, Liu B. When ternary PdCuP alloys meet ultrathin nanowires: synergic boosting of catalytic performance in ethanol electrooxidation. Appl Catal B 2019;253:271-7.
183. Jiang R, Tran DT, McClure JP, Chu D. A class of (Pd-Ni-P) electrocatalysts for the ethanol oxidation reaction in alkaline media. ACS Catal 2014;4:2577-86.
184. Wang H, Yang D, Liu S, et al. Metal-nonmetal one-dimensional electrocatalyst: AuPdP nanowires for ambient nitrogen reduction to ammonia. ACS Sustain Chem Eng 2019;7:15772-7.
185. Li C, Xu Y, Deng K, et al. Metal-nonmetal nanoarchitectures: quaternary PtPdNiP mesoporous nanospheres for enhanced oxygen reduction electrocatalysis. J Mater Chem A 2019;7:3910-6.
186. Xu Y, Ren K, Ren T, et al. Phosphorus-triggered modification of the electronic structure and surface properties of Pd4S nanowires for robust hydrogen evolution electrocatalysis. J Mater Chem A 2020;8:19873-8.
187. Yin S, Wang Z, Zhang H, et al. Enhancing hydrogen evolution activity of triangular PtPdCu nanodarts by phosphorus incorporation. Chem Eng J 2020;399:125810.
188. Shreyanka S, Theerthagiri J, Lee SJ, Yu Y, Choi MY. Multiscale design of 3D metal-organic frameworks (M-BTC, M: Cu, Co, Ni) via PLAL enabling bifunctional electrocatalysts for robust overall water splitting. Chem Eng J 2022;446:137045.
189. Zhang L, Lu D, Chen Y, Tang Y, Lu T. Facile synthesis of Pd-Co-P ternary alloy network nanostructures and their enhanced electrocatalytic activity towards hydrazine oxidation. J Mater Chem A 2014;2:1252-6.
190. Yin PF, Zhou M, Chen J, et al. Synthesis of palladium-based crystalline@amorphous core-shell nanoplates for highly efficient ethanol oxidation. Adv Mater 2020;32:2000482.
191. Broadbent HS, Slaugh LH, Jarvis NL. Rhenium sulfides as liquid-phase hydrogenation catalysts. a comparison with molybdenum sulfide and cobalt polysulfide. J Am Chem Soc 1954;76:1519-23.
192. Yoon D, Seo B, Lee J, et al. Facet-controlled hollow Rh2S3 hexagonal nanoprisms as highly active and structurally robust catalysts toward hydrogen evolution reaction. Energy Environ Sci 2016;9:850-6.
193. Singh VV, Kumar U, Tripathi SN, Singh AK. Shape dependent catalytic activity of nanoflowers and nanospheres of Pd4S generated via one pot synthesis and grafted on graphene oxide for Suzuki coupling. Dalton Trans 2014;43:12555-63.
194. Xu W, Ni J, Zhang Q, et al. Tailoring supported palladium sulfide catalysts through H2-assisted sulfidation with H2S. J Mater Chem A 2013:1.
195. O’Brien CP, Howard BH, Miller JB, Morreale BD, Gellman A J. Inhibition of hydrogen transport through Pd and Pd47Cu53 membranes by H2S at 350 °C. J Membr Sci 2010;349:380-4.
196. Kabe T, Qian W, Hirai Y, Li L, Ishihara A. Hydrodesulfurization and hydrogenation reactions on noble metal catalysts: I. Elucidation of the behavior of sulfur on alumina-supported platinum and palladium using the 35S radioisotope tracer method. J Catal 2000;190:191-8.
197. Mori A, Mizusaki T, Kawase M, et al. Novel palladium-on-carbon/diphenyl sulfide complex for chemoselective hydrogenation: preparation, characterization, and application. Adv Synth Catal 2008;350:406-10.
198. Schultz M, Matijević E. Preparation and properties of nanosized PdS dispersions for electrolytic plating. Colloids Surf A 1998;131:173-9.
199. O'Brien P, Waters J. Deposition of Ni and Pd sulfide thin films via aerosol-assisted CVD. Chem Vap Deposition 2006;12:620-6.
200. Radha B, Kulkarni GU. Patterned synthesis of Pd4S: chemically robust electrodes and conducting etch masks. Adv Funct Mater 2010;20:879-84.
201. Greeley J, Stephens IEL, Bondarenko AS, et al. Alloys of platinum and early transition metals as oxygen reduction electrocatalysts. Nat Chem 2009;1:552-6.
202. Du C, Li P, Yang F, et al. Monodisperse palladium sulfide as efficient electrocatalyst for oxygen reduction reaction. ACS Appl Mater Interf 2018;10:753-61.
203. Ma L, Yuan S, Jiang T, et al. Pd4S/SiO2: a sulfur-tolerant palladium catalyst for catalytic complete oxidation of methane. Catalysts 2019;9:410.
204. Yang J, Yan H, Wang X, et al. Roles of cocatalysts in Pt-PdS/CdS with exceptionally high quantum efficiency for photocatalytic hydrogen production. J Catal 2012;290:151-7.
205. McCue AJ, Guerrero-Ruiz A, Rodríguez-Ramos I, Anderson JA. Palladium sulphide-A highly selective catalyst for the gas phase hydrogenation of alkynes to alkenes. J Catal 2016;340:10-6.
206. Li X, Yang G, Li S, et al. Novel dual co-catalysts decorated Au@HCS@PdS hybrids with spatially separated charge carriers and enhanced photocatalytic hydrogen evolution activity. Chem Eng J 2020;379:122350.
207. McCue AJ, Guerrero-Ruiz A, Ramirez-Barria C, Rodríguez-Ramos I, Anderson JA. Selective hydrogenation of mixed alkyne/alkene streams at elevated pressure over a palladium sulfide catalyst. J Catal 2017;355:40-52.
208. Zubkov A, Fujino T, Sato N, Yamada K. Enthalpies of formation of the palladium sulphides. J Chem Thermodyn 1998;30:571-81.
209. Zhang Q, Feng F, Su C, et al. Preparation of supported core-shell structured Pd@PdxSy/C catalysts for use in selective reductive alkylation reaction. RSC Adv 2015;5:66278-85.
210. Zhang Q, Xu W, Li X, et al. Catalytic hydrogenation of sulfur-containing nitrobenzene over Pd/C catalysts: In situ sulfidation of Pd/C for the preparation of PdxSy catalysts. Appl Catal A 2015;497:17-21.
211. Liu Y, McCue AJ, Feng J, et al. Evolution of palladium sulfide phases during thermal treatments and consequences for acetylene hydrogenation. J Catal 2018;364:204-15.
212. Huang Y, Seo K D, Park DS, Park H, Shim YB. Hydrogen evolution and oxygen reduction reactions in acidic media catalyzed by Pd4S decorated N/S doped carbon derived from Pd coordination polymer. Small 2021;17:e2007511.
213. Wang Y, Xu K, Zhu Z, et al. Sulfurization-induced partially amorphous palladium sulfide nanosheets for highly efficient electrochemical hydrogen evolution. Chem Commun 2021;57:1368-71.
214. Novakova EK, McLaughlin L, Burch R, et al. Palladium-catalyzed liquid-phase hydrogenation/hydrogenolysis of disulfides. J Catal 2007;249:93-101.
215. Bach LG, Thi MLN, Bui QB, Nhac-Vu HT. Palladium sulfide nanoparticles attached MoS2/nitrogen-doped graphene heterostructures for efficient oxygen reduction reaction. Synth Met 2019;254:172-9.
216. Wang F, Shifa TA, Zhan X, et al. Recent advances in transition-metal dichalcogenide based nanomaterials for water splitting. Nanoscale 2015;7:19764-88.
217. Lv H, Sun L, Xu D, Liu B. Ternary metal-metalloid-nonmetal alloy nanowires: a novel electrocatalyst for highly efficient ethanol oxidation electrocatalysis. Sci Bull 2020;65:1823-31.
218. Lv H, Xu D, Sun L, et al. Ternary palladium-boron-phosphorus alloy mesoporous nanospheres for highly efficient electrocatalysis. ACS Nano 2019;13:12052-61.
219. Yin S, Xu Y, Liu S, et al. Binary nonmetal S and P-co-doping into mesoporous PtPd nanocages boosts oxygen reduction electrocatalysis. Nanoscale 2020;12:14863-9.
220. Xu Y, Yu S, Ren T, et al. A quaternary metal-metalloid-nonmetal electrocatalyst: B, P-co-doping into PdRu nanospine assemblies boosts the electrocatalytic capability toward formic acid oxidation. J Mater Chem A 2020;8:2424-9.
221. Zhang G, Wang A, Niu L, et al. Interfacial engineering to construct antioxidative Pd4S/Pd3P0.95 heterostructure for robust hydrogen production at high current density. Adv Energy Mater 2022;12:2103511.
222. Zhang W, Lin W, Ren J, Zheng N, Wu B. Electrochemical reduction of nitrogen to ammonia by Pd-S-Mo nanosheets on a hydrophobic hierarchical graphene support. ChemElectroChem 2022;9:e202100052.
223. Xu Y, Wang M, Yu S, et al. Electronic structure control over Pd nanorods by B, P-co-doping enables enhanced electrocatalytic performance. Chem Eng J 2021;421:127751.