REFERENCES

1. Rimer JD, Chawla A, Le TT. Crystal engineering for catalysis. Annu Rev Chem Biomol Eng 2018;9:283-309.

2. Dandekar P, Kuvadia ZB, Doherty MF. Engineering crystal morphology. Annu Rev Mater Res 2013;43:359-86.

3. Lai WH, Wang YX, Wang Y, et al. Morphology tuning of inorganic nanomaterials grown by precipitation through control of electrolytic dissociation and supersaturation. Nat Chem 2019;11:695-701.

4. Görke M, Garnweitner G. Crystal engineering of nanomaterials: current insights and prospects. CrystEngComm 2021;23:7916-27.

5. Brammer L. Developments in inorganic crystal engineering. Chem Soc Rev 2004;33:476-89.

6. Zhou W. Reversed crystal growth: implications for crystal engineering. Adv Mater 2010;22:3086-92.

7. Desiraju GR. Crystal engineering: a holistic view. Angew Chem Int Ed Engl 2007;46:8342-56.

8. Jain R, Mallette AJ, Rimer JD. Controlling nucleation pathways in zeolite crystallization: seeding conceptual methodologies for advanced materials design. J Am Chem Soc 2021;143:21446-60.

9. Olafson KN, Li R, Alamani BG, Rimer JD. Engineering crystal modifiers: bridging classical and nonclassical crystallization. Chem Mater 2016;28:8453-65.

10. De Yoreo JJ, Gilbert PU, Sommerdijk NA, et al. Crystal growth. Crystallization by particle attachment in synthetic, biogenic, and geologic environments. Science 2015;349:aaa6760.

11. Kirschhock CEA, Ravishankar R, Jacobs PA, Martens JA. Aggregation mechanism of nanoslabs with zeolite MFI-type structure. J Phys Chem B 1999;103:11021-7.

12. Sheng Z, Li H, Du K, et al. Observing a zeolite nucleus (subcrystal) with a uniform framework structure and its oriented attachment without single-molecule addition. Angew Chem Int Ed Engl 2021;60:13444-51.

13. Davis TM, Drews TO, Ramanan H, et al. Mechanistic principles of nanoparticle evolution to zeolite crystals. Nat Mater 2006;5:400-8.

14. He G, Dahl T, Veis A, George A. Nucleation of apatite crystals in vitro by self-assembled dentin matrix protein 1. Nat Mater 2003;2:552-8.

15. Fang Y, Hu H, Chen G. In situ assembly of zeolite nanocrystals into mesoporous aggregate with single-crystal-like morphology without secondary template. Chem Mater 2008;20:1670-2.

16. Zhang H, Ma Y, Song K, Zhang Y, Tang Y. Nano-crystallite oriented self-assembled ZSM-5 zeolite and its LDPE cracking properties: Effects of accessibility and strength of acid sites. J Catal 2013;302:115-25.

17. Niederberger M, Cölfen H. Oriented attachment and mesocrystals: non-classical crystallization mechanisms based on nanoparticle assembly. Phys Chem Chem Phys 2006;8:3271-87.

18. Song RQ, Cölfen H. Mesocrystals-ordered nanoparticle superstructures. Adv Mater 2010;22:1301-30.

19. Sturm Née Rosseeva EV, Cölfen H. Mesocrystals: structural and morphogenetic aspects. Chem Soc Rev 2016;45:5821-33.

20. Shamzhy M, Opanasenko M, Concepción P, Martínez A. New trends in tailoring active sites in zeolite-based catalysts. Chem Soc Rev 2019;48:1095-149.

21. Choi M, Na K, Kim J, Sakamoto Y, Terasaki O, Ryoo R. Stable single-unit-cell nanosheets of zeolite MFI as active and long-lived catalysts. Nature 2009;461:246-9.

22. Zhang Y, Che S. π-π interactions between aromatic groups in amphiphilic molecules: directing hierarchical growth of porous zeolites. Angew Chem Int Ed Engl 2020;59:50-60.

23. Korde A, Min B, Kapaca E, et al. Single-walled zeolitic nanotubes. Science 2022;375:62-6.

24. Jacobsen CJH, Madsen C, Houzvicka J, Schmidt I, Carlsson A. Mesoporous zeolite single crystals. J Am Chem Soc 2000;122:7116-7.

25. Azhati A, Xie S, Wang W, et al. Ordered, highly zeolitized mesoporous aluminosilicates produced by a gradient acidic assembly growth strategy in a mixed template system. Chem Mater 2016;28:4859-66.

26. Sun MH, Chen LH, Yu S, et al. Micron-sized zeolite beta single crystals featuring intracrystal interconnected ordered macro-meso-microporosity displaying superior catalytic performance. Angew Chem Int Ed Engl 2020;59:19582-91.

27. Jung J, Jo C, Mota FM, Cho J, Ryoo R. Acid catalytic function of mesopore walls generated by MFI zeolite desilication in comparison with external surfaces of MFI zeolite nanosheet. Appl Catal A-Gen 2015;492:68-75.

28. Qin Z, Melinte G, Gilson JP, et al. The mosaic structure of zeolite crystals. Angew Chem Int Ed Engl 2016;55:15049-52.

29. Zhang B, Zhang Y, Hu Y, et al. Microexplosion under microwave irradiation: a facile approach to create mesopores in zeolites. Chem Mater 2016;28:2757-67.

30. Ren N, Subotić B, Bronić J, et al. Unusual pathway of crystallization of zeolite ZSM-5 in a heterogeneous system: phenomenology and starting considerations. Chem Mater 2012;24:1726-37.

31. Zhang Q, Mayoral A, Terasaki O, et al. Amino acid-assisted construction of single-crystalline hierarchical nanozeolites via oriented-aggregation and intraparticle ripening. J Am Chem Soc 2019;141:3772-6.

32. Zhang Q, Chen G, Wang Y, et al. High-quality single-crystalline MFI-type nanozeolites: a facile synthetic strategy and MTP catalytic studies. Chem Mater 2018;30:2750-8.

33. Zhang H, Zhao Y, Zhang H, et al. Tailoring zeolite ZSM-5 crystal morphology/porosity through flexible utilization of silicalite-1 seeds as templates: unusual crystallization pathways in a heterogeneous system. Chem Eur J 2016;22:7141-51.

34. Kumar M, Luo H, Román-Leshkov Y, Rimer JD. SSZ-13 crystallization by particle attachment and deterministic pathways to crystal size control. J Am Chem Soc 2015;137:13007-17.

35. Lupulescu AI, Kumar M, Rimer JD. A facile strategy to design zeolite L crystals with tunable morphology and surface architecture. J Am Chem Soc 2013;135:6608-17.

36. Zheng J, Zhang W, Liu Z, et al. Unraveling the non-classic crystallization of SAPO-34 in a dry gel system towards controlling meso-structure with the assistance of growth inhibitor: growth mechanism, hierarchical structure control and catalytic properties. Microporous Mesoporous Mater 2016;225:74-87.

37. Ye Z, Zhao Y, Zhang H, et al. Mesocrystal morphology regulation by “alkali metals ion switch”: re-examining zeolite nonclassical crystallization in seed-induced process. J Colloid Interface Sci 2022;608:1366-76.

38. Zhang H, Zhang H, Zhao Y, Shi Z, Zhang Y, Tang Y. Seeding bundlelike MFI zeolite mesocrystals: a dynamic, nonclassical crystallization via epitaxially anisotropic growth. Chem Mater 2017;29:9247-55.

39. Zhao Y, Zhang H, Wang P, et al. Tailoring the morphology of MTW zeolite mesocrystals: intertwined classical/nonclassical crystallization. Chem Mater 2017;29:3387-96.

40. Wang L, Zhu SC, Shen MK, et al. Fractal MTW zeolite crystals: hidden dimensions in nanoporous materials. Angew Chem Int Ed Engl 2017;56:11764-8.

41. Wang P, Zhao Y, Zhang H, Yu T, Zhang Y, Tang Y. Effect of pyrazolium-derived compounds as templates in zeolite synthesis. RSC Adv 2017;7:23272-8.

42. Ruiz AZ, Brühwiler D, Ban T, Calzaferri G. Synthesis of zeolite L. Tuning size and morphology. Monatsh Chem 2005;136:77-89.

43. Hu Y, Liu C, Zhang Y, Ren N, Tang Y. Microwave-assisted hydrothermal synthesis of nanozeolites with controllable size. Microporous Mesoporous Mater 2009;119:306-14.

44. Larlus O, Valtchev VP. Crystal morphology control of LTL-type zeolite crystals. Chem Mater 2004;16:3381-9.

45. Meier WM, Olson DH, Baerlocher C. Atlas of zeolite structure types. Zeolites 1996. Available from: https://www.researchgate.net/publication/248827852_Atlas_of_Zeolite_Structure_Types. [Last accessed on 25 Nov 2022]

46. Itani L, Bozhilov KN, Clet G, Delmotte L, Valtchev V. Factors that control zeolite L crystal size. Chem Eur J 2011;17:2199-210.

47. Kumar M, Li R, Rimer JD. Assembly and evolution of amorphous precursors in zeolite L crystallization. Chem Mater 2016;28:1714-27.

48. Thommes M, Kaneko K, Neimark AV, et al. Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure Appl Chem 2015;87:1051-69.

49. Devi R, Borah R, Deka RC. Design of zeolite catalysts for nitroaldol reaction under mild condition. Appl Catal A-Gen 2012;433-434:122-7.

50. Tangale NP, Sonar SK, Niphadkar PS, Joshi PN. Hierarchical K/LTL zeolites: synthesis by alkali treatment, characterization and catalytic performance in Knoevenagel condensation reaction. J Ind Eng Chem 2016;40:128-36.

51. Joshi PN, Jacob NE, Shiralkar VP. Physicochemical characterization of the intermediate phases obtained during the hydrothermal crystallization of LTL zeolites. J Phys Chem 1995;99:4225-9.

52. Oleksiak MD, Soltis JA, Conato MT, Penn RL, Rimer JD. Nucleation of FAU and LTA zeolites from heterogeneous aluminosilicate precursors. Chem Mater 2016;28:4906-16.

53. Dutta PK, Shieh DC. Crystallization of zeolite A: a spectroscopic study. J Phys Chem 1986;90:2331-4.

54. Chen CT, Iyoki K, Hu P, et al. Reaction kinetics regulated formation of short-range order in an amorphous matrix during zeolite crystallization. J Am Chem Soc 2021;143:10986-97.

55. Li R, Linares N, Sutjianto JG, Chawla A, Garcia-Martinez J, Rimer JD. Ultrasmall zeolite L crystals prepared from highly interdispersed alkali-silicate precursors. Angew Chem Int Ed Engl 2018;57:11283-8.

56. Ohgushi T, Matsuo T, Satoh H, Matsumoto T. Cation distribution in K,H-L zeolite prepared through ion-exchange with TMA ion. Microporous Mesoporous Mater 2009;117:472-7.

57. Bulut E, Özacar M, Şengil İA. Adsorption of malachite green onto bentonite: Equilibrium and kinetic studies and process design. Microporous Mesoporous Mater 2008;115:234-46.

58. Choy KKH, Porter JF, Mckay G. Langmuir isotherm models applied to the multicomponent sorption of acid dyes from effluent onto activated carbon. J Chem Eng Data 2000;45:575-84.

59. Hu Y, Zhang Y, Ren N, Tang Y. Crystal plane- and size-dependent protein adsorption on nanozeolite. J Phys Chem C 2009;113:18040-6.

Chemical Synthesis
ISSN 2769-5247 (Online)

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/