REFERENCES
1. Ge J, Fan L, Rao AM, Zhou J, Lu B. Surface-substituted Prussian blue analogue cathode for sustainable potassium-ion batteries. Nat Sustain 2022;5:225-34.
2. Song K, Liu C, Mi L, Chou S, Chen W, Shen C. Recent progress on the alloy-based anode for sodium-ion batteries and potassium-ion batteries. Small 2021;17:e1903194.
3. Wan Y, Song K, Chen W, et al. Ultra-high initial coulombic efficiency induced by interface engineering enables rapid, stable sodium storage. Angew Chem Int Ed Engl 2021;60:11481-6.
4. Leng K, Li G, Guo J, et al. A safe polyzwitterionic hydrogel electrolyte for long-life quasi-solid state zinc metal batteries. Adv Funct Mater 2020;30:2001317.
5. Zhang C, Liu S, Li G, Zhang C, Liu X, Luo J. Incorporating ionic paths into 3D conducting scaffolds for high volumetric and areal capacity, high rate lithium-metal anodes. Adv Mater 2018:e1801328.
6. Li G, Guan X, Wang A, Wang C, Luo J. Cations and anions regulation through zwitterionic gel electrolytes for stable lithium metal anodes. Energy Storage Mater 2020;24:574-8.
7. Wang R, Zheng J, Feng X, et al. Highly [010]-oriented, gradient Co-doped LiMnPO4 with enhanced cycling stability as cathode for Li-ion batteries. J Solid State Electrochem 2020;24:511-9.
8. Yang K, Zhang X, Song K, et al. Se-C bond and reversible SEI in facile synthesized SnSe23D carbon induced stable anode for sodium-ion batteries. Electrochimica Acta 2020;337:135783.
9. Hwang JY, Myung ST, Sun YK. Sodium-ion batteries: present and future. Chem Soc Rev 2017;46:3529-614.
10. Åvall G, Mindemark J, Brandell D, Johansson P. Sodium-ion battery electrolytes: modeling and simulations. Adv Energy Mater 2018;8:1703036.
11. Zhang J, Song K, Mi L, et al. Bimetal synergistic effect induced high reversibility of conversion-type Ni@NiCo2S4 as a free-standing anode for sodium ion batteries. J Phys Chem Lett 2020;11:1435-42.
12. Chen L, Song K, Shi J, et al. PAANa-induced ductile SEI of bare micro-sized FeS enables high sodium-ion storage performance. Sci China Mater 2021;64:105-14.
13. Ma B, Bai P. Fast charging limits of ideally stable metal anodes in liquid electrolytes. Adv Eng Mater 2022;12:2102967.
14. Zhao Y, Liu H, Meng X, Liu A, Chen Y, Ma T. A cross-linked tin oxide/polymer composite gel electrolyte with adjustable porosity for enhanced sodium ion batteries. Chem Energ J 2022;431:133922.
15. Zhou S, Lan J, Song K, Zhang Z, Shi J, Chen W. SnS/SnS2/rGO heterostructure with fast kinetics enables compact sodium ion storage. FlatChem 2021;28:100259.
16. Miao RJ, Cao XG, Wang WG, Zhang HY. Influence of Bi2O3 additive on the electrochemical performance of Na3.1Y0.1Zr1.9Si2PO12 inorganic solid electrolyte. Ceram Int 2021;47:17455-62.
17. Das SK, Lau S, Archer LA. Sodium-oxygen batteries: a new class of metal-air batteries. J Mater Chem A 2014;2:12623.
19. Zhang D, Li B, Wang S, Yang S. Simultaneous formation of artificial SEI film and 3D host for stable metallic sodium anodes. ACS Appl Mater Interfaces 2017;9:40265-72.
20. Wu J, Liu J, Lu Z, et al. Non-flammable electrolyte for dendrite-free sodium-sulfur battery. Energy Storage Mater 2019;23:8-16.
21. Zhao S, Li L, Li F, Chou S. Recent progress on understanding and constructing reliable Na anode for aprotic Na-O2 batteries: a mini review. Electrochem commun 2020;118:106797.
22. Tong Z, Wang S, Fang M, et al. Na-CO2 battery with NASICON-structured solid-state electrolyte. Nano Energy 2021;85:105972.
23. Ding J, Zhou H, Zhang H, Tong L, Mitlin D. Selenium impregnated monolithic carbons as free-standing cathodes for high volumetric energy lithium and sodium metal batteries. Adv Energy Mater 2018;8:1701918.
24. Pham VH, Boscoboinik JA, Stacchiola DJ, et al. Selenium-sulfur (SeS) fast charging cathode for sodium and lithium metal batteries. Energy Storage Mater 2019;20:71-9.
25. Wang Y, Wang Y, Wang Y, et al. Developments and perspectives on emerging high-energy-density sodium-metal batteries. Chem 2019;5:2547-70.
26. Wang Y, Jiang R, Liu Y, et al. Enhanced sodium metal/electrolyte interface by a localized high-concentration electrolyte for sodium metal batteries: first-principles calculations and experimental studies. ACS Appl Energy Mater 2021;4:7376-84.
27. Yu Q, Lu Q, Qi X, et al. Liquid electrolyte immobilized in compact polymer matrix for stable sodium metal anodes. Energy Storage Mater 2019;23:610-6.
28. Xu X, Li Y, Cheng J, et al. Composite solid electrolyte of Na3PS4-PEO for all-solid-state SnS2/Na batteries with excellent interfacial compatibility between electrolyte and Na metal. J Energ Chem 2020;41:73-8.
29. Mittal N, Tien S, Lizundia E, Niederberger M. Hierarchical nanocellulose-based gel polymer electrolytes for stable na electrodeposition in sodium ion batteries. Small 2022:e2107183.
30. Bao C, Wang B, Liu P, et al. Solid electrolyte interphases on sodium metal anodes. Adv Funct Mater 2020;30:2004891.
31. Yao G, Zhang X, Yan Y, et al. Facile synthesis of hierarchical Na2Fe(SO4)2@rGO/C as high-voltage cathode for energy density-enhanced sodium-ion batteries. J Energ Chem 2020;50:387-94.
32. Ponrouch A, Monti D, Boschin A, Steen B, Johansson P, Palacín MR. Non-aqueous electrolytes for sodium-ion batteries. J Mater Chem A 2015;3:22-42.
33. Li Y, Arnold W, Halacoglu S, Jasinski JB, Druffel T, Wang H. Phase-transition interlayer enables high-performance solid-state sodium batteries with sulfide solid electrolyte. Adv Funct Mater 2021;31:2101636.
34. Wei S, Choudhury S, Xu J, Nath P, Tu Z, Archer LA. Highly stable sodium batteries enabled by functional ionic polymer membranes. Adv Mater 2017;29:1605512.
35. Manohar C, Raj K A, Kar M, Forsyth M, Macfarlane DR, Mitra S. Stability enhancing ionic liquid hybrid electrolyte for NVP@C cathode based sodium batteries. Sustainable Energy Fuels 2018;2:566-76.
36. Mishra K, Yadav N, Hashmi SA. Recent progress in electrode and electrolyte materials for flexible sodium-ion batteries. J Mater Chem A 2020;8:22507-43.
37. Wang T, Hua Y, Xu Z, Yu JS. Recent advanced development of artificial interphase engineering for stable sodium metal anodes. Small 2022;18:e2102250.
38. Lee J, Kim J, Kim S, Jo C, Lee J. A review on recent approaches for designing the SEI layer on sodium metal anodes. Mater Adv 2020;1:3143-66.
40. Ma C, Xu T, Wang Y. Advanced carbon nanostructures for future high performance sodium metal anodes. Energy Storage Mater 2020;25:811-26.
41. Fan L, Li X. Recent advances in effective protection of sodium metal anode. Nano Energy 2018;53:630-42.
42. Matios E, Wang H, Wang C, Li W. Enabling safe sodium metal batteries by solid electrolyte interphase engineering: a review. Ind Eng Chem Res 2019;58:9758-80.
44. Zheng X, Gu Z, Liu X, et al. Bridging the immiscibility of an all-fluoride fire extinguishant with highly-fluorinated electrolytes toward safe sodium metal batteries. Energy Environ Sci 2020;13:1788-98.
45. Zheng J, Chen S, Zhao W, Song J, Engelhard MH, Zhang J. Extremely stable sodium metal batteries enabled by localized high-concentration electrolytes. ACS Energy Lett 2018;3:315-21.
46. Zhu M, Li L, Zhang Y, et al. An in-situ formed stable interface layer for high-performance sodium metal anode in a non-flammable electrolyte. Energy Storage Mater 2021;42:145-53.
47. Lei D, He YB, Huang H, et al. Cross-linked beta alumina nanowires with compact gel polymer electrolyte coating for ultra-stable sodium metal battery. Nat Commun 2019;10:4244.
48. Park T, Park M, Ban A, Lee Y, Kim D. Nonflammable gel polymer electrolyte with ion-conductive polyester networks for sodium metal cells with excellent cycling stability and enhanced safety. ACS Appl Energy Mater 2021;4:10153-62.
49. Yao Y, Wei Z, Wang H, et al. Toward high energy density all solid-state sodium batteries with excellent flexibility. Adv Energy Mater 2020;10:1903698.
50. Lai H, Li Y, Wang J, Li W, Wu X, Wen Z. Design of solid-state sodium-ion batteries with high mass-loading cathode by porous-dense bilayer electrolyte. Journal of Materiomics 2021;7:1352-7.
51. Ran L, Li M, Cooper E, et al. Enhanced safety and performance of high-voltage solid-state sodium battery through trilayer, multifunctional electrolyte design. Energy Storage Mater 2021;41:8-13.
52. Zhang Z, Zhang Q, Ren C, et al. A ceramic/polymer composite solid electrolyte for sodium batteries. J Mater Chem A 2016;4:15823-8.
53. Hong Y, Li N, Chen H, Wang P, Song W, Fang D. In operando observation of chemical and mechanical stability of Li and Na dendrites under quasi-zero electrochemical field. Energy Storage Mater 2018;11:118-26.
54. Han M, Zhu C, Ma T, Pan Z, Tao Z, Chen J. In situ atomic force microscopy study of nano-micro sodium deposition in ester-based electrolytes. Chem Commun (Camb) 2018;54:2381-4.
55. Wang H, Wang C, Matios E, Li W. Facile stabilization of the sodium metal anode with additives: unexpected key role of sodium polysulfide and adverse effect of sodium nitrate. Angew Chem Int Ed Engl 2018;57:7734-7.
56. Hu J, Wang H, Wang S, et al. Electrochemical deposition mechanism of sodium and potassium. Energy Storage Mater 2021;36:91-8.
57. Zheng X, Bommier C, Luo W, Jiang L, Hao Y, Huang Y. Sodium metal anodes for room-temperature sodium-ion batteries: applications, challenges and solutions. Energy Storage Mater 2019;16:6-23.
58. Gaissmaier D, van den Borg M, Fantauzzi D, Jacob T. Microscopic properties of Na and Li-a first principle study of metal battery anode materials. ChemSusChem 2020;13:771-83.
59. Medenbach L, Bender CL, Haas R, et al. Origins of dendrite formation in sodium-oxygen batteries and possible countermeasures. Energy Technol 2017;5:2265-74.
60. Rodriguez R, Loeffler KE, Nathan SS, et al. In situ optical imaging of sodium electrodeposition: effects of fluoroethylene carbonate. ACS Energy Lett 2017;2:2051-7.
61. Akolkar R. Mathematical model of the dendritic growth during lithium electrodeposition. J Power Sources 2013;232:23-8.
62. Park MS, Woo HS, Heo JM, et al. Thermoplastic polyurethane elastomer-based gel polymer electrolytes for sodium-metal cells with enhanced cycling performance. ChemSusChem 2019;12:4645-54.
63. Gu Y, Wang WW, Li YJ, et al. Designable ultra-smooth ultra-thin solid-electrolyte interphases of three alkali metal anodes. Nat Commun 2018;9:1339.
64. Sun B, Xiong P, Maitra U, et al. Design strategies to enable the efficient use of sodium metal anodes in high-energy batteries. Adv Mater 2020;32:e1903891.
65. Wang X, Wang X, Chen J, Zhao Y, Mao Z, Wang D. Durable sodium battery composed of conductive Ti3C2Tx MXene modified gel polymer electrolyte. Solid State Ionics 2021;365:115655.
66. Gao H, Xin S, Xue L, Goodenough JB. Stabilizing a high-energy-density rechargeable sodium battery with a solid electrolyte. Chem 2018;4:833-44.
67. Wang H, Matios E, Luo J, Li W. Combining theories and experiments to understand the sodium nucleation behavior towards safe sodium metal batteries. Chem Soc Rev 2020;49:3783-805.
68. Rees GJ, Spencer Jolly D, Ning Z, Marrow TJ, Pavlovskaya GE, Bruce PG. Imaging sodium dendrite growth in all-solid-state sodium batteries using 23Na T2-weighted magnetic resonance imaging. Angew Chem Int Ed Engl 2021;60:2110-5.
69. Wang X, Chen J, Mao Z, Wang D. In situ construction of a stable interface induced by the SnS2 ultra-thin layer for dendrite restriction in a solid-state sodium metal battery. J Mater Chem A 2021;9:16039-45.
70. Yi Q, Lu Y, Sun X, Zhang H, Yu H, Sun C. Fluorinated ether based electrolyte enabling sodium-metal batteries with exceptional cycling stability. ACS Appl Mater Interfaces 2019;11:46965-72.
71. Wang T, Yang K, Shi J, et al. Simple synthesis of sandwich-like SnSe2/rGO as high initial coulombic efficiency and high stability anode for sodium-ion batteries. J Energ Chem 2020;46:71-7.
72. Gao L, Chen J, Liu Y, Yamauchi Y, Huang Z, Kong X. Revealing the chemistry of an anode-passivating electrolyte salt for high rate and stable sodium metal batteries. J Mater Chem A 2018;6:12012-7.
73. Xu Y, Sun H, Ma C, Gai J, Wan Y, Chen W. Pre-sodiation strategy for superior sodium storage batteries. Chin J Chem Eng 2021;39:261-8.
74. Fang W, Jiang H, Zheng Y, et al. A bilayer interface formed in high concentration electrolyte with SbF3 additive for long-cycle and high-rate sodium metal battery. J Power Sources 2020;455:227956.
75. Lei Y, Du G, Qi Y, Niu Y, Bao S, Xu M. Gelation of organic liquid electrolyte to achieve superior sodium-ion full-cells. J Colloid Interface Sci 2021;599:190-7.
76. Xu M, Li Y, Ihsan-ul-haq M, et al. NaF-rich solid electrolyte interphase for dendrite-free sodium metal batteries. Energy Storage Mater 2022;44:477-86.
77. Wenzel S, Leichtweiss T, Krüger D, Sann J, Janek J. Interphase formation on lithium solid electrolytes - an in situ approach to study interfacial reactions by photoelectron spectroscopy. Solid State Ionics 2015;278:98-105.
78. Binder M, Mandl M, Zaubitzer S, et al. Sodium cyclopentadienide as a new type of electrolyte for sodium batteries. ChemElectroChem 2021;8:365-9.
79. Ge C, Wang L, Xue L, et al. Synthesis of novel organic-ligand-doped sodium bis(oxalate)-borate complexes with tailored thermal stability and enhanced ion conductivity for sodium ion batteries. J Power Sources 2014;248:77-82.
80. Voropaeva D, Novikova S, Kulova T, Yaroslavtsev A. Solvation and sodium conductivity of nonaqueous polymer electrolytes based on Nafion-117 membranes and polar aprotic solvents. Solid State Ionics 2018;324:28-32.
81. Xu X, Zhou D, Qin X, et al. A room-temperature sodium-sulfur battery with high capacity and stable cycling performance. Nat Commun 2018;9:3870.
82. Li P, Jiang Z, Huang X, Lu X, Xie J, Cheng S. Nitrofullerene as an electrolyte-compatible additive for high-performance sodium metal batteries. Nano Energy 2021;89:106396.
83. Chen Q, He H, Hou Z, et al. Building an artificial solid electrolyte interphase with high-uniformity and fast ion diffusion for ultralong-life sodium metal anodes. J Mater Chem A 2020;8:16232-7.
84. Chen X, Shen X, Hou T, Zhang R, Peng H, Zhang Q. Ion-solvent chemistry-inspired cation-additive strategy to stabilize electrolytes for sodium-metal batteries. Chem 2020;6:2242-56.
85. Hu Y, Lu Y. The mystery of electrolyte concentration: from superhigh to ultralow. ACS Energy Lett 2020;5:3633-6.
86. Ma J, Zhang W, Wang X, et al. Revealing the mechanism of saturated ether electrolyte for improving the long-cycling stability of Na-O2 batteries. Nano Energy 2021;84:105927.
87. Wang H, Tong Z, Yang R, et al. Electrochemically stable sodium metal-tellurium/carbon nanorods batteries. Adv Energy Mater 2019;9:1903046.
88. Zhou X, Zhang Q, Zhu Z, Cai Y, Li H, Li F. Anion-reinforced solvation for a gradient inorganic-rich interphase enables high-rate and stable sodium batteries. Angew Chem Int Ed Engl 2022;61:e202205045.
89. Forsyth M, Yoon H, Chen F, et al. Novel Na+ ion diffusion mechanism in mixed organic-inorganic ionic liquid electrolyte leading to high Na+ transference number and stable, high rate electrochemical cycling of sodium cells. J Phys Chem C 2016;120:4276-86.
90. Sun H, Zhu G, Xu X, et al. A safe and non-flammable sodium metal battery based on an ionic liquid electrolyte. Nat Commun 2019;10:3302.
91. Wang D, Hwang J, Chen C, Kubota K, Matsumoto K, Hagiwara R. A β”-Alumina/inorganic ionic liquid dual electrolyte for intermediate-temperature sodium-sulfur batteries. Adv Funct Materials 2021;31:2105524.
92. Ruiz-martínez D, Kovacs A, Gómez R. Development of novel inorganic electrolytes for room temperature rechargeable sodium metal batteries. Energy Environ Sci 2017;10:1936-41.
93. Zhou H, Li H, Gong Q, et al. A sodium liquid metal battery based on the multi-cationic electrolyte for grid energy storage. Energy Storage Mater 2022;50:572-9.
94. Liu X, Zheng X, Deng Y, et al. Implanting a fire-extinguishing alkyl in sodium metal battery electrolytes via a functional molecule. Adv Funct Materials 2022;32:2109378.
95. Jiang R, Hong L, Liu Y, et al. An acetamide additive stabilizing ultra-low concentration electrolyte for long-cycling and high-rate sodium metal battery. Energy Storage Mater 2021;42:370-9.
96. Shi Q, Zhong Y, Wu M, Wang H, Wang H. High-performance sodium metal anodes enabled by a bifunctional potassium salt. Angew Chem Int Ed Engl 2018;57:9069-72.
97. Lee J, Lee Y, Lee J, et al. Ultraconcentrated sodium bis(fluorosulfonyl)imide-based electrolytes for high-performance sodium metal batteries. ACS Appl Mater Interfaces 2017;9:3723-32.
98. Seh ZW, Sun J, Sun Y, Cui Y. A Highly reversible room-temperature sodium metal anode. ACS Cent Sci 2015;1:449-55.
99. Wang S, Chen Y, Jie Y, et al. Stable sodium metal batteries via manipulation of electrolyte solvation structure. Small Methods 2020;4:1900856.
100. Zhang Q, Lu Y, Miao L, et al. An alternative to lithium metal anodes: non-dendritic and highly reversible sodium metal anodes for Li-Na hybrid batteries. Angew Chem Int Ed Engl 2018;57:14796-800.
101. Lee B, Paek E, Mitlin D, Lee SW. Sodium metal anodes: emerging solutions to dendrite growth. Chem Rev 2019;119:5416-60.
102. He J, Bhargav A, Shin W, Manthiram A. Stable dendrite-free sodium-sulfur batteries enabled by a localized high-concentration electrolyte. J Am Chem Soc 2021;143:20241-8.
103. Chen F, Wang X, Armand M, Forsyth M. Cationic polymer-in-salt electrolytes for fast metal ion conduction and solid-state battery applications. Nat Mater 2022; doi: 10.1038/s41563-022-01319-w.
104. Lu Z, Yang H, Guo Y, et al. Electrolyte sieving chemistry in suppressing gas evolution of sodium-metal batteries. Angew Chem Int Ed Engl 2022;61:e202206340.
105. Wang X, Zhang C, Sawczyk M, et al. Ultra-stable all-solid-state sodium metal batteries enabled by perfluoropolyether-based electrolytes. Nat Mater 2022;21:1057-65.
106. Zhu X, Zhao R, Deng W, Ai X, Yang H, Cao Y. An all-solid-state and all-organic sodium-ion battery based on redox-active polymers and plastic crystal electrolyte. Electrochimica Acta 2015;178:55-9.
107. Babu B, Enke M, Prykhodska S, Lex-Balducci A, Schubert US, Balducci A. New diglyme-based gel polymer electrolytes for na-based energy storage devices. ChemSusChem 2021;14:4836-45.
108. Yu X, Xue L, Goodenough JB, Manthiram A. Ambient-temperature all-solid-state sodium batteries with a laminated composite electrolyte. Adv Funct Mater 2021;31:2002144.
109. Zheng J, Yang Y, Li W, Feng X, Chen W, Zhao Y. Novel flame retardant rigid spirocyclic biphosphate based copolymer gel electrolytes for sodium ion batteries with excellent high-temperature performance. J Mater Chem A 2020;8:22962-8.
110. Bitner-Michalska A, Nolis GM, Żukowska G, et al. Fluorine-free electrolytes for all-solid sodium-ion batteries based on percyano-substituted organic salts. Sci Rep 2017;7:40036.
111. Gao H, Xue L, Xin S, Park K, Goodenough JB. A plastic-crystal electrolyte interphase for all-solid-state sodium batteries. Angew Chem Int Ed Engl 2017;56:5541-5.
112. Makhlooghiazad F, Nti F, Sun J, et al. Composite electrolytes based on electrospun PVDF and ionic plastic crystal matrices for Na-metal battery applications. J Phys Mater 2021;4:034003.
113. Chen G, Ye L, Zhang K, et al. Hyperbranched polyether boosting ionic conductivity of polymer electrolytes for all-solid-state sodium ion batteries. Chem Eng J 2020;394:124885.
114. Du G, Tao M, Li J, et al. Low-operating temperature, high-rate and durable solid-state sodium-ion battery based on polymer electrolyte and prussian blue cathode. Adv Energy Mater 2020;10:1903351.
115. Zhao C, Liu L, Lu Y, Wagemaker M, Chen L, Hu YS. Revealing an interconnected interfacial layer in solid-state polymer sodium batteries. Angew Chem Int Ed Engl 2019;58:17026-32.
116. Chen S, Feng F, Yin Y, Che H, Liao X, Ma Z. A solid polymer electrolyte based on star-like hyperbranched β-cyclodextrin for all-solid-state sodium batteries. J Power Sources 2018;399:363-71.
117. Gao H, Zhou W, Park K, Goodenough JB. A sodium-ion battery with a low-cost cross-linked gel-polymer electrolyte. Adv Energy Mater 2016;6:1600467.
118. Xiong W, Tu Z, Yin Z, Zhang X, Hu X, Wu Y. Supported ionic liquid gel membranes enhanced by ionization modification for sodium metal batteries. ACS Sustainable Chem Eng 2021;9:12100-8.
119. Wen P, Lu P, Shi X, et al. Photopolymerized gel electrolyte with unprecedented room-temperature ionic conductivity for high-energy-density solid-state sodium metal batteries. Adv Energy Mater 2021;11:2002930.
120. Zhang W, Zhang J, Liu X, et al. In-situ polymerized gel polymer electrolytes with high room-temperature ionic conductivity and regulated Na+ solvation structure for sodium metal batteries. Adv Funct Materials 2022;32:2201205.
121. Zheng J, Sun Y, Li W, Feng X, Chen W, Zhao Y. Effects of comonomers on the performance of stable phosphonate-based gel terpolymer electrolytes for sodium-ion batteries with ultralong cycling stability. ACS Appl Mater Interfaces 2021;13:25024-35.
122. Bay M, Wang M, Grissa R, Heinz MVF, Sakamoto J, Battaglia C. Sodium plating from Na-β”-alumina ceramics at room temperature, paving the way for fast-charging all-solid-state batteries. Adv Energy Mater 2020;10:1902899.
123. Wu J, Zhang R, Fu Q, et al. Inorganic solid electrolytes for all-solid-state sodium batteries: fundamentals and strategies for battery optimization. Adv Funct Mater 2021;31:2008165.
124. Matios E, Wang H, Wang C, et al. Graphene regulated ceramic electrolyte for solid-state sodium metal battery with superior electrochemical stability. ACS Appl Mater Interfaces 2019;11:5064-72.
125. Weng W, Liu G, Shen L, Yao X. High ionic conductivity and stable phase Na11.5Sn2Sb0.5Ti0.5S12 for all-solid-state sodium batteries. J Power Sources 2021;512:230485.
126. Wang X, Chen J, Wang D, Mao Z. Improving the alkali metal electrode/inorganic solid electrolyte contact via room-temperature ultrasound solid welding. Nat Commun 2021;12:7109.
127. Wang C, Sun Z, Zhao Y, et al. Grain boundary design of solid electrolyte actualizing stable all-solid-state sodium batteries. Small 2021;17:e2103819.
128. Quérel E, Seymour ID, Cavallaro A, Ma Q, Tietz F, Aguadero A. The role of NaSICON surface chemistry in stabilizing fast-charging Na metal solid-state batteries. J Phys Energy 2021;3:044007.
129. Zhang S, Zhao Y, Zhao F, et al. Gradiently sodiated alucone as an interfacial stabilizing strategy for solid-state na metal batteries. Adv Funct Mater 2020;30:2001118.
130. Johari NSM, Jonderian A, Jia S, et al. High-throughput development of Na2ZnSiO4-based hybrid electrolytes for sodium-ion batteries. J Power Sources 2022;541:231706.
131. Nsm J, Sbrs A, Ahmad N. Sodium-ion nanoionic hybrid solid electrolyte: extended study on enhanced electrical and electrochemical properties. Solid State Ionics 2022;377:115882.
132. Zhang T, Li J, Li X, et al. A silica-reinforced composite electrolyte with greatly enhanced interfacial lithium-ion transfer kinetics for high-performance lithium metal batteries. Adv Mater 2022:e2205575.
133. Zhang C, Wang A, Zhang J, Guan X, Tang W, Luo J. 2D materials for lithium/sodium metal anodes. Adv Energy Mater 2018;8:1802833.
134. Tang W, Tang S, Zhang C, et al. Simultaneously enhancing the thermal stability, mechanical modulus, and electrochemical performance of solid polymer electrolytes by incorporating 2D sheets. Adv Energy Mater 2018;8:1800866.
135. He F, Tang W, Zhang X, Deng L, Luo J. High energy density solid state lithium metal batteries enabled by sub-5 µm solid polymer electrolytes. Adv Mater 2021;33:e2105329.
136. Niu W, Chen L, Liu Y, Fan L. All-solid-state sodium batteries enabled by flexible composite electrolytes and plastic-crystal interphase. Chem Eng J 2020;384:123233.
137. Zhou Y, Xiao Z, Han D, et al. Approaching practically accessible and environmentally adaptive sodium metal batteries with high loading cathodes through in situ interlock interface. Adv Funct Materials 2022;32:2111314.
138. Ran L, Tao S, Gentle I, et al. Stable interfaces in a sodium metal-free, solid-state sodium-ion battery with gradient composite electrolyte. ACS Appl Mater Interfaces 2021;13:39355-62.
139. Matios E, Wang H, Luo J, et al. Reactivity-guided formulation of composite solid polymer electrolytes for superior sodium metal batteries. J Mater Chem A 2021;9:18632-43.
140. Luo C, Shen T, Ji H, et al. Mechanically robust gel polymer electrolyte for an ultrastable sodium metal battery. Small 2020;16:e1906208.
141. Zhang Z, Huang Y, Li C, Li X. Metal-organic framework-supported poly(ethylene oxide) composite gel polymer electrolytes for high-performance lithium/sodium metal batteries. ACS Appl Mater Interfaces 2021;13:37262-72.
142. Hamisu A, Çelik SÜ. Polymer composite electrolyte of SPSU(Na)/PPEGMA/hBN for sodium-ion batteries. Polymers and Polymer Composites 2019;27:419-28.
143. Miao X, Di H, Ge X, et al. AlF3-modified anode-electrolyte interface for effective Na dendrites restriction in NASICON-based solid-state electrolyte. Energy Storage Mater 2020;30:170-8.
144. Sun Z, Zhao Y, Ni Q, et al. Solid-state Na metal batteries with superior cycling stability enabled by ferroelectric enhanced Na/Na3Zr2Si2PO12 interface. Small 2022;18:e2200716.
145. Zhao Y, Wang C, Dai Y, Jin H. Homogeneous Na+ transfer dynamic at Na/Na3Zr2Si2PO12 interface for all solid-state sodium metal batteries. Nano Energy 2021;88:106293.
146. Wang C, Jin H, Zhao Y. Surface potential regulation realizing stable sodium/Na3Zr2Si2PO12 interface for room-temperature sodium metal batteries. Small 2021;17:e2100974.
147. Yang J, Xu H, Wu J, et al. Improving Na/Na3Zr2Si2PO12 interface via SnOx/Sn film for high-performance solid-state sodium metal batteries. Small Methods 2021;5:e2100339.
148. Yang L, Jiang Y, Liang X, et al. Novel sodium-poly(tartaric acid)borate-based single-ion conducting polymer electrolyte for sodium-metal batteries. ACS Appl Energy Mater 2020;3:10053-60.
149. Qi X, Ma Q, Liu L, et al. Sodium bis(fluorosulfonyl)imide/poly(ethylene oxide) polymer electrolytes for sodium-ion batteries. ChemElectroChem 2016;3:1741-5.
150. Zheng Y, Pan Q, Clites M, Byles BW, Pomerantseva E, Li CY. High-capacity all-solid-state sodium metal battery with hybrid polymer electrolytes. Adv Energy Mater 2018;8:1801885.
151. Ling W, Fu N, Yue J, et al. A flexible solid electrolyte with multilayer structure for sodium metal batteries. Adv Energy Mater 2020;10:1903966.
152. Luo C, Li Q, Shen D, Zheng R, Huang D, Chen Y. Enhanced interfacial kinetics and fast Na+ conduction of hybrid solid polymer electrolytes for all-solid-state batteries. Energy Storage Mater 2021;43:463-70.
153. Xu X, Lin K, Zhou D, et al. Quasi-solid-state dual-ion sodium metal batteries for low-cost energy storage. Chem 2020;6:902-18.