REFERENCES

1. Jin Y, Liu K, Lang J, et al. High-energy-density solid-electrolyte-based liquid Li-S and Li-Se batteries. Joule 2020;4:262-74.

2. Sun J, Du Z, Liu Y, et al. State-of-the-art and future challenges in high energy lithium-selenium batteries. Adv Mater 2021;33:e2003845.

3. Eftekhari A. The rise of lithium-selenium batteries. Sustain Energy Fuels 2017;1:14-29.

4. Song JP, Wu L, Dong WD, et al. MOF-derived nitrogen-doped core-shell hierarchical porous carbon confining selenium for advanced lithium-selenium batteries. Nanoscale 2019;11:6970-81.

5. Lei Y, Liang X, Yang L, et al. Li-Se batteries: insights to the confined structure of selenium in hierarchical porous carbon and discharge mechanism in the carbonate electrolyte. Carbon 2022;191:122-31.

6. Li C, Wang Y, Li H, et al. Weaving 3D highly conductive hierarchically interconnected nanoporous web by threading MOF crystals onto multi walled carbon nanotubes for high performance Li-Se battery. J Energy Chem 2021;59:396-404.

7. Wang X, Tan Y, Liu Z, et al. New insight into the confinement effect of microporous carbon in Li/Se battery chemistry: a cathode with enhanced conductivity. Small 2020;16:e2000266.

8. Li H, Li C, Wang Y, et al. Selenium confined in ZIF-8 derived porous carbon@MWCNTs 3D networks: tailoring reaction kinetics for high performance lithium-selenium batteries. Chem Synth 2022;2:8.

Chemical Synthesis
ISSN 2769-5247 (Online)

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/